首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 74 毫秒
1.
俄罗斯极地乌拉尔Сыум-Key超基性岩体中的硬玉岩呈脉状在以叶蛇纹石为主的蛇纹岩中产出,硬玉岩由硬玉和绿辉石组成,根据硬玉岩的颜色、结构和构造可划分出三个世代,可能对应存在三期硬玉化过程.第一世代硬玉为主体,灰白色,粗粒结构,致密块状,硬玉分子(Jd)含量54%~88%;第二世代硬玉发育在灰白色硬玉中,呈浅绿色,细粒-隐晶结构,细脉状.囊状,硬玉分子(Jd)含量74%~86%;第三世代硬玉呈绿色-深绿色,半透明-透明,中-细粒结构,瘤状.第二、三世代硬玉达到珠宝首饰级,具有较高的商业价值.根据硬玉岩的产状和晶体具有韵律生长环带及流体包裹体发育等特征,认为硬玉岩是在高压低温环境中由富含Na、Al、Si的流体直接结晶形成的.  相似文献   

2.
俄罗斯极地乌拉尔Сыум-Кеу超基性岩体中的硬玉岩呈脉状在以叶蛇纹石为主的蛇纹岩中产出,硬玉岩由硬玉和绿辉石组成,根据硬玉岩的颜色、结构和构造可划分出三个世代,可能对应存在三期硬玉化过程。第一世代硬玉为主体,灰白色,粗粒结构,致密块状,硬玉分子(Jd)含量54%~88%;第二世代硬玉发育在灰白色硬玉中,呈浅绿色,细粒-隐晶结构,细脉状-囊状,硬玉分子(Jd)含量74%~86%;第三世代硬玉呈绿色-深绿色,半透明-透明,中-细粒结构,瘤状。第二、三世代硬玉达到珠宝首饰级,具有较高的商业价值。根据硬玉岩的产状和晶体具有韵律生长环带及流体包裹体发育等特征,认为硬玉岩是在高压低温环境中由富含Na、Al、Si的流体直接结晶形成的。  相似文献   

3.
位于北美-加勒比板块俯冲带内的危地马拉硬玉岩区产有硬玉岩、榴辉岩、钠长岩等岩石类型,但绿辉石岩还没有详细报导过。研究样品为该区的硬玉岩和绿辉石岩,前者主要由Jd端元含量较高的硬玉组成,具有粒、柱状镶嵌结构。硬玉晶体具有显著的成分振荡环带,其核部及其背散射电子图像的浅色区Jd端元含量为94.81%~95.48%;暗色区Jd含量大于97.92%。后者绿辉石岩具有交代结构,主要由绿辉石和硬玉组成。其中绿辉石的CaO(9.01%~10.80%)和MgO(6.09%~7.94%)含量较高,FeO(2.84%~4.89%)含量较低;硬玉的CaO、MgO和FeO含量变化范围较大,分别为0.59%~4.30%,0.26%~3.05%,0.76%~2.87%。硬玉岩中流体包裹体的存在,以及绿辉石岩中显著的硬玉交代绿辉石现象说明其成因与缅甸硬玉一样,是硬玉质流体通过结晶-交代作用形成。硬玉岩中硬玉振荡的环带结构反映形成时温度-压力-组分体系存在振荡变化,平直连续的环带边界反映结晶时P-T条件位于硬玉稳定的低温高压区域。该区绿辉石岩的硬玉化作用清楚,能够观察到三期硬玉岩化作用现象,说明绿辉石岩可能是在硬玉岩的形成过程中,硬玉质流体与原岩辉石岩作用的结果,这进一步阐明了俯冲带内硬玉岩区硬玉质流体的广泛透入性与结晶交代作用的多样性。  相似文献   

4.
缅甸硬玉岩是世界上最大和最重要的玉石矿床之一,位于印度板块和欧亚板块之间的新特提斯洋缝合带中。研究表明,缅甸硬玉岩是新特提斯洋壳俯冲过程中橄榄岩经高压变质、交代作用形成的。对不同变质程度缅甸硬玉岩样品中的流体包裹体的研究表明,缅甸硬玉岩中含有4种类型的流体包裹体:1不含或含少量甲烷的低盐度水溶液包裹体(Ⅰ型),呈孤立状或小群(簇状)产于硬玉晶体核部,或沿着硬玉晶体的生长环带分布,具有原生生长结构;2含石盐子晶的H2O+Na Cl±CH4三相包裹体(Ⅱ型);3纯甲烷(CH4)包裹体(Ⅲ型),可以细分为高密度(Ⅲa)和低密度(Ⅲb)两种;4气相或空包裹体(Ⅳ型)。研究表明,缅甸硬玉岩及其相关岩石在形成和演化过程中发生了多期次流体交代事件。硬玉形成过程中,交代橄榄岩的流体相可能来自海水。首次在缅甸硬玉岩中识别出高盐度的含水包裹体和高密度的含CH4包裹体。高盐度的含水包裹体可能与硬玉岩重结晶过程相关,而高密度的CH4流体可能为俯冲板片的上地幔楔中超基性岩蛇纹石化过程的副产物。计算的流体包裹体等容线表明,硬玉岩演化过程中这些流体包裹体发生了不同程度的再平衡。  相似文献   

5.
流体一超镁铁质岩相互作用与硬玉岩的形成   总被引:1,自引:0,他引:1  
祁敏  向华  钟增球  周汉文 《地球科学》2011,36(3):511-520
俯冲带中流体与岩石相互作用以及流体循环一直是地质学家关注的焦点之一.硬玉岩(翡翠)作为高档宝玉石材料,其成因一直备受关注.硬玉岩产于与俯冲带有关的蛇纹石化超镁铁质岩中,是俯冲带中流体与超镁铁岩相互作用的特殊产物.岩石组合、岩相学、显微结构及矿物化学特征表明:橄榄岩与流体的作用可以分为5个阶段,分别为蛇纹石化→(绿泥石、...  相似文献   

6.
中国东部大别山超高压变质杂岩中的石英硬玉岩带   总被引:12,自引:2,他引:12  
大别山的石英硬玉岩是大别山超高压变质杂岩中的重要成员,与大理岩和榴辉岩紧密共生,呈大小不等的构造透镜体产出在云母斜长片麻岩和含硬玉片麻岩中,分布在长约40km,宽约1km的带内。透镜体中心常为花岗变晶结构,边部有不同程度退变并面理化,向外围逐渐变为含硬玉片麻岩。岩石的主要矿物组成为硬玉、石英、石榴石、金红石。退变的石英硬玉岩中还有钠长石、霓石、霓辉石、榍石等。硬玉和石榴石中都有柯石英包体。硬玉的Jd端元组分为81.25%~90.27%。恢复的石英硬玉岩的原岩为硬砂岩,与大理岩伴生的榴辉岩的原岩为泥灰岩。因此,石英硬玉岩与共生的大理岩和榴辉岩都属于榴辉岩相变质的表壳岩系,它的成带分布、其中有柯石英的产出,进一步证明大陆地壳能够俯冲到100km左右深度并迅速折返地壳后使其中的高压标志保存完好。  相似文献   

7.
基于多期次流体活动在硬玉岩及后成合晶冠状体的交互作用过程中发挥了至关重要的作用,采用电子探针、显微红外光谱等测试方法,从微尺度角度重点对缅甸角闪石质硬玉岩中角闪石+铬硬玉+硬玉后成合晶冠状体的成分和结构羟基赋存状态进行了研究.结果显示,参与后成合晶冠状体形成的流体组分较为复杂且形成过程是多阶段的;后成合晶冠状体的共生矿...  相似文献   

8.
祁敏  向华  张泽明  钟增球 《岩石学报》2014,30(8):2279-2286
硬玉岩大多产于蛇纹石化橄榄岩中,是洋壳俯冲带低温高压条件下流体与超基性岩相互作用的产物。缅甸硬玉岩产于新特提斯洋俯冲带中,是世界上最大和最重要的硬玉矿床。本文对一块缅甸紫色硬玉岩中的锆石进行了内部结构、微量元素和U-Pb定年研究。所研究的锆石晶形不规则,普遍遭受了不同程度的重结晶改造。锆石U-Pb年龄与Ti含量具有明显的正相关性,反映了受重结晶改造越强,Ti含量越低。受重结晶改造较弱的锆石区域具有弱的岩浆分带特征,较高的Th/U比值(0.11~0.29)和REE含量(ΣREE=607×10-6~2494×10-6),Ti含量在1.58×10-6~8.60×10-6之间,对应的锆石Ti温度为598~732℃,206Pb/238U年龄加权平均值为158±4Ma(MSWD=3.5,N=6),代表了硬玉岩中岩浆锆石结晶年龄的最小估计值;重结晶改造较强的锆石区域呈现出杂乱的补丁状分带,根据锆石Th/U比值、REE含量和Ti含量分为完全重结晶锆石和不完全重结晶锆石。完全重结晶锆石区域具有相对低的Th/U比值(集中在0.11~0.17),REE含量较低(ΣREE=143×10-6~362×10-6)并具有非常低的Ti含量(0.19×10-6~0.68×10-6),对应的锆石Ti温度为473~543℃,与硬玉岩形成的温度条件相符,给出的206Pb/238U加权平均年龄为79±2Ma(MSWD=0.88,N=5),代表了硬玉岩有关的流体活动的年龄。而不完全重结晶锆石区域的地球化学特征介于两者之间,Th/U比值在0.14~0.43,Ti含量多数在0.25~7.17之间,其年龄范围在91~142Ma之间,不具有明确的地质意义。结合已有的缅甸硬玉岩的年代学数据,我们认为在新特提斯洋俯冲过程中发生了多期次的流体交代作用,在147~79Ma期间形成了不同时代的硬玉岩。  相似文献   

9.
东昆仑造山带中灶火地区镁铁质岩墙群以闪长玢岩为主,含少量闪斜煌斑岩、辉绿玢岩及辉绿岩,LA-ICPMS锆石U-Pb年代学指示该套岩墙群结晶侵位年龄为(249±1)Ma。稀土元素含量整体较高,富集轻稀土元素(∑REE=99.9×10-6~173.9×10-6,(La/Yb)N=3.5~9.3);微量元素表现出富集大离子亲石元素(LILE),亏损高场强元素(HFSE)的特征;源区分析表明,镁铁质岩浆为俯冲洋壳析出的流体交代富集地幔的结果,且在岩石成因中部分熔融起到主导作用,地壳混染和分离结晶作用对岩浆成分分异起到的作用有限。构造环境分析表明,岩石的形成与俯冲作用有关,结合区域构造演化认为镁铁质岩墙群的成因为:早三叠世,在古特提斯洋向北俯冲的环境下,俯冲板片释放的流体交代富集地幔,诱发地幔部分熔融形成镁铁质岩浆,受弧后伸展的动力学背景影响,岩浆最终上升侵位形成镁铁质岩墙群。  相似文献   

10.
高晓英 《地球科学》2019,44(12):4064-4071
硬玉石英岩是一种稀少且与流体作用相关的变质岩,同时出露于高压或超高压洋壳和陆壳俯冲带中.通过对中国东部大别造山带中出露达50 km2的含柯石英的超高压硬玉石英岩进行研究,综合全岩主微量元素、矿物Mg-O同位素和锆石学研究.结果表明,硬玉石英岩的原岩为古元古代TTG岩石,经历过弱化学风化和强物理风化作用,然后在三叠纪时期受到围岩富黑云母片麻岩分解脱水而产生的大量重Mg同位素流体交代,从而形成硬玉石英岩.考虑到这种受流体交代成因的硬玉石英岩在大别山广泛出露,表明其在三叠纪大陆深俯冲过程中存在着大规模的变质流体活动,这项研究首次报道了大陆俯冲带有大规模的流体活动存在,同时也挑战了传统观点认为的大陆俯冲带缺乏岛弧岩浆作用主要原因是缺乏足够量的流体活动.   相似文献   

11.
The Enganepe ophiolite, Polar Urals was formed at 670 Ma and records a diverse geochemical association of tholeiite, arc-tholeiite, adakite, and OIB-like lithologies. This constrains the tectonic setting of the protolith of the ophiolite to an oceanic island-arc, with ridge-trench interaction most readily explaining the diverse compositions. The initiation of intra-ocean subduction and the development of the Enganepe island arc off the eastern margin of Baltica probably pre-dated the formation of the Enganepe ophiolite, i.e. prior to 670 Ma. The timing of island-arc magmatism is similar in age to that recorded off Avalon in the Cadomian arc. We propose that the active margin of Baltica in the Vendian is an extension of the Cadomian arc. This requires the northeast margin of Baltica (present-day coordinates) to have been in a southerly position in the Vendian, in agreement with proposed tectonic reconstructions. Consequently, the post-Rodinia continental amalgamation, Pannotia, had active ocean-continent convergence along its entire southerly (west Avalonia and Amazonian cratons) margin at the time of its break-up.  相似文献   

12.
本文介绍了名义上无水的辉石族矿物中结构水的研究现状,特别是硬玉矿物的结构水红外表征和含量。且笔者以缅甸硬玉岩为研究对象,使用显微红外光谱、电子探针等测试手段,从微观角度研究其中硬玉矿物的结构水表征。研究结果表明:缅甸硬玉岩中硬玉矿物的结构水在红外光谱中主要表征为3 610~3 620 cm-1和3 540~3 550cm-1两个区域的吸收峰,且结构疏松的硬玉岩中硬玉矿物的结构水含量呈现外侧多中间少,结构致密的硬玉矿物的结构水含量各部位较为均一。结构水的含量差异和变化趋势可能是硬玉岩形成时板块俯冲和折返过程中的流体参与作用的结果,进一步为缅甸硬玉岩成因提供了的佐证。  相似文献   

13.
The Nurali lherzolite massif is one of the dismembered ophiolite bodies associated with the Main Uralian Fault (Southern Urals, Russia). It comprises a mainly lherzolitic mantle section, an ultramafic clinopyroxene-rich cumulate sequence (Transition Zone), and an amphibole gabbro unit.The cumulate section hosts small chromitite bodies at different stratigraphic heights within the sequence. Chromitite bodies from three different levels along a full section of the cumulate sequence and two from other localities were investigated. They differ in the host lithology, chromitite texture and composition, and PGE content and mineralogy. Chromitites at the lowest level, which are hosted by clinopyroxenite, form cm-scale flattened lenses. They have high Cr# and low Mg# chromites and are enriched in Pt and Pd relative to Os and Ir. At a higher, intermediate level, the chromitites are hosted by dunite. They form meter thick lenses, contain low Cr# and high Mg# chromites, have high PGE contents (up to 26,700 ppb), and are enriched in Os, Ir and Ru relative to Pt and Pd, reflecting a mineralogy dominated by laurite–erlichmanite and PGE–Fe alloys. At the highest level are chromitites hosted by olivine–enstatite rocks. These chromitites have high Cr# and relatively low Mg# chromites and very low PGE content, with laurite as the dominant PGE mineral.The platinum group minerals (PGMs) show extreme zoning, with compositions ranging from erlichmanite to almost pure laurite and from Os-rich to Ru-rich alloys, with variable and irregular zoning patterns.Two chromitite bodies up to 6 km from the main sequence can be correlated with the latter based on geochemistry and mineralogy, implying that the variations in chromitite geochemistry are due to processes that operated on the scale of the massif rather than those that operated on the scale of the outcrop.Pertsev et al. [Pertsev, A.N., Spadea, P., Savelieva, G.N., Gaggero, L., 1997. Nature of the transition zone in the Nurali ophiolite, Southern Urals. Tectonophysics 276, 163–180.] propose that the Transition Zone formed by solidification of a series of small magma bodies that partially overlapped in time and space. The magmas formed by successive partial melting of the underlying mantle. We suggest that this process determined the changing PGE geochemistry of the successive batches of magma. The PGE distribution fits a model of selected extraction from the mantle, where monosulphide solid solution–sulphide liquid equilibrium was attained until complete melting of the monosulphide solid solution. Later and localized variations in fS2 resulted in the formation of different PGMs with complex zoning patterns.  相似文献   

14.
用Y/Ho比值指示俄罗斯乌拉尔南部晶质菱镁矿矿床的成因   总被引:1,自引:1,他引:1  
乌拉尔省南部赋存有两种类型的晶质菱镁矿:1)白云岩地层中的层状矿体;2)白云质灰岩中的透镜状矿体。晶质菱镁矿矿体位于Riphean系列中下层的白云岩中,而在上层的白云岩单元中缺失。这两种类型的菱镁矿可通过矿体形态、晶体大小、石英和白云石含量不同来进行区分。第一种类型的菱镁矿储量巨大,菱镁矿呈粗粒结构,晶体粒径>10mm(最大达150mm);一般来说,矿体与白云岩围岩界限清楚,这种类型矿床以产在Riphean序列下部为特征。第二种类型的菱镁矿由于菱镁矿矿体穿插进入到白云岩围岩中,矿体很不规则,菱镁矿晶体也相对较小(1-5mm),这种类型的矿体主要产在Riphean中部层位中。这两种矿体都显示了交代成因的特征。但这两种菱镁矿矿石在一些主量元素和稀土元素的分布上具有不同的特征:与第二种类型相比,第一种菱镁矿具有较低的FeO,CaO和SiO2含量,与白云岩围岩(La/Lu>1)相比,具La/Lu<1的轻稀土亏损特征。第二种菱镁矿稀土分馏度较低,在稀土分配方面与白云岩围岩有差别。本文还特别讨论了Y/Ho值的重要性,因为该比值在菱镁矿和围岩中的类似性使得划分菱镁矿形成中的热液和成岩交代过程成为可能。因此我们认为,第一种类型菱镁矿,如具有高Y/Ho比值的Satka和Bakal矿床的形成属于沉积盆地发育过程中的早期成岩阶段;第  相似文献   

15.
On the basis of internal structures, laser ablation U–Pb ages and trace element compositions, the origin of zircon in jadeitite in the Nishisonogi metamorphic rocks was examined. The zircon comprises euhedral zoned cores overgrown by euhedral rims. The cores contain inclusions of muscovite, quartz, albite and possibly K‐feldspar, yield 238U–206Pb ages of 126 ± 6 Ma (±2 SD, n = 45, MSWD = 1.0), and have Th/U ratios of 0.48–1.64. The rims contain inclusions of jadeite, yield 238U–206Pb ages of 84 ± 6 Ma (±2 SD, n = 14, MSWD = 1.1), and have Th/U ratios of <0.06. The cores are richer in Y, Th, Ti and rare earth elements (REEs), but the rims are richer in Hf and U. Chondrite‐normalized REE patterns of the cores indicate higher SmN/LaN ratios, lower YbN/GdN ratios and larger positive Ce anomalies compared with those of the rims. Thus, the cores and rims have different 238U–206Pb ages and trace element compositions, suggesting two stages of zircon growth. Although the 238U–206Pb ages of the rims are consistent with the reported 40Ar/39Ar spot‐fusion ages of matrix muscovite in the jadeitite, the 238U–206Pb ages of the cores are older. The mineral inclusions and high Th/U ratios in the cores are best explained by crystallization from felsic magma. Therefore, the cores are considered relicts from igneous precursor rocks. The rims surrounding the inherited cores possibly precipitated from aqueous fluids during jadeitite formation. The elevated U concentrations in the rims suggest that infiltration of external fluids was responsible for the precipitation. This study provides an example of jadeitite formation by metasomatic replacement of a protolith.  相似文献   

16.
Jadeitite is a rare constituent of serpentinite-matrix mélange bodies from certain subduction complexes. Most jadeitite crystallizes from Na-, Al-, and Si-bearing fluids that are apparently derived from multiple subduction-zone sources. Even though jadeitite is near-end-member NaAlSi2O6 in major element composition and is volumetrically minor in subduction complexes, its trace elements and stable isotopes appear to record fluid compositions not directly seen in other subduction zone metasomatic systems.

Prior to our work, how jadeitite-forming fluids interact with serpentinite host rocks and serpentinizing fluids were largely unknown, because serpentinite-to-jadeitite contacts are generally not exposed. In the Sierra de las Minas, Guatemala, we have studied a 3 m-wide pit transecting the contact between a mined-out jadeitite body and its host serpentinite. An apparent transition zone between the former jadeitite and nearby serpentinite exposed in the mine pit contains four texturally distinct rock types of differing outcrop colours, composed of albitites and meta-ultramafic rocks. (The jadeitite body is now represented only by a large spoil pile.) Seven samples from the contact zone, jadeitite from the spoil pile, a serpentinite outcrop approximately 1 m outside the pit, and a jadeitite nodule within the contact zone albitite were analysed for major, minor, and trace elements.

Abundances of Al2O3, Na2O, MgO, FeO, Cr, Ni, and Sc track the contact between sheared albitite and foliated meta-ultramafic rocks. These elements change from values typical of Guatemalan jadeitites in the jadeitite block and albitites in the contact zone to values for Guatemalan meta-ultramafic rocks and serpentinites across the contact zone. In addition, the abundances of SiO2, CaO, Fe2O3, K2O, Rb, Cs, and Y show important features. Of greatest interest, perhaps, approximately 15 cm from the contact with meta-ultramafic rock, Zr, U, Hf, Pb, Ba, Sr, Y, and Cs in albitite are greatly enriched compared to elsewhere in the contact zone. Element enrichments spatially coincide with the appearance, increase in modal abundance, and/or increase in grain sizes of zircon, rare earth element (REE) rich epidote, titantite, and celsian within albitite. All of these ‘trace-element-rich’ accessory minerals show poikiloblastic inclusions of albite, which suggests that they grew concomitantly in the metasomatic zone.

Graphical and computational methods of evaluating mass changes of metasomatites relative to likely protoliths show that, near the contact, fewer minor and trace elements in albitite show 1:1 coordination with presumed protoliths. Most metasomatitites are enriched in large-ion lithophile elements (LILE) and heat-producing elements (HPE) relative to likely protoliths. Albitite near the contact with meta-ultramafic rocks also shows ultramafic components. Except for a Ca-rich actinolite schist zone, the meta-ultramafic rocks are depleted in LILE and HPE relative to serpentinite; host serpentinite is itself under-abundant in these elements relative to average upper mantle or chondrite.

In summary, the metasomatic zone shows more evidence for the introduction of components to albitite and actinolitic meta-ultramafic rock than it does for exchange of protolith components between jadeitite and serpentinite. The fluid that presumably formed the metasomatites was sufficiently rich in LILE and high-field-strength elements (HFSE) to both saturate and grow minerals in which Zr, Ba, and Ti are essential structural constituents and/or HFSE, LILE, and HPE minor to moderate substituents. These geochemically diverse element groups were fixed in albitite via the crystallization and growth of new accessory minerals within these rocks during albititization. The amount of LILE and HPE-depleted meta-ultramafic rock appears to be too small to call upon a local source for the LILE and HPE-enrichment seen in albitites. Therefore, LILE and HPE must be of exotic origin, carried and deposited by fluids within the albitites at the jadeitite-serpentinite contact. This contact clearly testifies to an alteration style that involved crystallization of ‘trace-element’-rich minerals during fluid flow; this process appears to be essential to mass transfer within subduction zones.  相似文献   

17.
Early Precambrian rock units in the Urals are present in several polymetamorphic complexes, which are exposed in the Urals in the form of small (<1500 km2) tectonic blocks. Their ages are Archaean (as old as 3.5 Ga) and Palaeoproterozoic. During the formation of these complexes in the early Precambrian, two stages of ultra-high-temperature (granulite) metamorphism occurred. The maximum age of the early Neoarchaean stage of metamorphism is 2.79 Ga. Evidence of this metamorphic event includes the dating of the Taratash gneiss-granulite complex of the South Urals. Gneiss-migmatite complexes, which dominate the lower Precambrian section of the Urals, were formed in the Palaeoproterozoic during the sequential appearance of granulite facies metamorphism followed by amphibolite facies metamorphism and accompanying granitization. The maximum age of the Palaeoproterozoic stage of granulite metamorphism in the Alexandrov gneiss-migmatite complex, the most well-studied complex in the South Urals, is 2.08 Ga.  相似文献   

18.
This study investigated Holocene tree‐line history and climatic change in the pre‐Polar Urals, northeast European Russia. A sediment core from Mezhgornoe Lake situated at the present‐day alpine tree‐line was studied for pollen, plant macrofossils, Cladocera and diatoms. A peat section from Vangyr Mire in the nearby mixed mountain taiga zone was analysed for pollen. The results suggest that the study area experienced a climatic optimum in the early Holocene and that summer temperatures were at least 2°C warmer than today. Tree birch immigrated to the Mezhgornoe Lake area at the onset of the Holocene. Mixed spruce forests followed at ca. 9500–9000 14C yr BP. Climate was moist and the water level of Mezhgornoe Lake rose rapidly. The hypsithermal phase lasted until ca. 5500–4500 14C yr BP, after which the mixed forest withdrew from the Mezhgornoe catchment as a result of the climate cooling. The gradual altitudinal downward shift of vegetation zones resulted in the present situation, with larch forming the tree‐line. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
The Jusa and Barsuchi Log volcanogenic massive sulfide (VMS) deposits formed along a paleo island arc in the east Magnitogrosk zone of the Southern Urals between ca 398 and 390 Ma. By analogy with the VMS deposits of the west Magnitogrosk zone, they are considered to be Baimak type deposits, which are Zn‐Cu‐Ba deposits containing Au, Ag and minor Pb. Detailed mapping and textural analysis of the two deposits shows that they formed as submarine hydrothermal mounds which were subsequently destroyed on the sea floor under the influence of ocean bottom currents and slumping. Both deposits display a ratio of the length to the maximum width of the deposit >15 and are characterized by ribbon‐like layers composed mainly of bedded ore and consisting principally of altered fine clastic ore facies. The Jusa deposit appears to have formed in two stages: deposition of colloform pyrite followed by deposition of copper–zinc–lead sulfides characterized by the close association of pyrite, chalcopyrite, sphalerite, galena, tennantite, arsenopyrite, marcasite, pyrrhotite, bornite, native gold and electrum and high concentrations of gold and silver. The low metamorphic grade of the east Magnitogorsk zone accounts for the exceptional degree of preservation of these deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号