首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The evolution of the European Cenozoic Rift System (ECRIS) and the Alpine orogen is discussed on the base of a set of palaeotectonic maps and two retro-deformed lithospheric transects which extend across the Western and Central Alps and the Massif Central and the Rhenish Massif, respectively.During the Paleocene, compressional stresses exerted on continental Europe by the evolving Alps and Pyrenees caused lithospheric buckling and basin inversion up to 1700 km to the north of the Alpine and Pyrenean deformation fronts. This deformation was accompanied by the injection of melilite dykes, reflecting a plume-related increase in the temperature of the asthenosphere beneath the European foreland. At the Paleocene–Eocene transition, compressional stresses relaxed in the Alpine foreland, whereas collisional interaction of the Pyrenees with their foreland persisted. In the Alps, major Eocene north-directed lithospheric shortening was followed by mid-Eocene slab- and thrust-loaded subsidence of the Dauphinois and Helvetic shelves. During the late Eocene, north-directed compressional intraplate stresses originating in the Alpine and Pyrenean collision zones built up and activated ECRIS.At the Eocene–Oligocene transition, the subducted Central Alpine slab was detached, whereas the West-Alpine slab remained attached to the lithosphere. Subsequently, the Alpine orogenic wedge converged northwestward with its foreland. The Oligocene main rifting phase of ECRIS was controlled by north-directed compressional stresses originating in the Pyrenean and Alpine collision zones.Following early Miocene termination of crustal shortening in the Pyrenees and opening of the oceanic Provençal Basin, the evolution of ECRIS was exclusively controlled by west- and northwest-directed compressional stresses emanating from the Alps during imbrication of their external massifs. Whereas the grabens of the Massif Central and the Rhône Valley became inactive during the early Miocene, the Rhine Rift System remained active until the present. Lithospheric folding controlled mid-Miocene and Pliocene uplift of the Vosges-Black Forest Arch. Progressive uplift of the Rhenish Massif and Massif Central is mainly attributed to plume-related thermal thinning of the mantle-lithosphere.ECRIS evolved by passive rifting in response to the build-up of Pyrenean and Alpine collision-related compressional intraplate stresses. Mantle-plume-type upwelling of the asthenosphere caused thermal weakening of the foreland lithosphere, rendering it prone to deformation.  相似文献   

2.
The Spanish Central Pyrenees have been the scenario of at least two damaging earthquakes in the last 800 years. Analysis of macroseismic data of the most recent one, the Vielha earthquake (19 November 1923), has led to the identification of the North Maladeta Fault (NMF) as the seismic source of the event. This E–W trending fault defines the northern boundary of the Maladeta Batholith and corresponds to a segment of the Alpine Gavarnie thrust fault. Our study shows that the NMF offsets a reference Neogene peneplain. The maximum observed vertical displacement is  730 m, with the northern downthrown sector slightly tilting towards the South. This offset provides evidence of normal faulting and together with the presence of tectonic faceted spurs allowed us to geomorphically identify a fault trace of 17.5 km. This length suggests that a maximum earthquake of Mw = 6.5 ± 0.66 could occur in the area. The geomorphological study was improved with a resistivity model obtained at Prüedo, where a unique detritic Late Miocene sequence crops out adjacent to the NMF. The section is made up of 13 audiomagnetotelluric soundings along a 1.5 km transect perpendicular to the fault trace at Prüedo and reveals the structure in depth, allowing us to interpret the Late Miocene deposits as tectonically trapped basin deposits associated with normal faulting of the NMF. The indirect age of these deposits has been constrained between 11.1 and 8.7 Ma, which represents a minimum age for the elevated Pyrenean peneplain in this part of the Pyrenees. Therefore, we propose the maximum vertical dip-slip rate for the NMF to be between 0.06 and 0.08 mm/a. Normal faulting in this area is attributed to the vertical lithospheric stress associated with the thickened Pyrenean crust.  相似文献   

3.
Modelling of gravity and airborne magnetic data integrated with seismic studies suggest that the linear gravity and magnetic anomalies associated with Moyar Bhavani Shear Zone (MBSZ) and Palghat Cauvery Shear Zone (PCSZ) are caused by high density and high susceptibility rocks in upper crust which may represent mafic lower crustal rocks. This along with thick crust (44–45 km) under the Southern Granulite Terrain (SGT) indicates collision of Dharwar craton towards north and SGT towards south with N–S directed compression during 2.6–2.5 Ga. This collision may be related to contemporary collision northwards between Eastern Madagascar–Western Dharwar Craton (WDC) and Eastern Dharwar Craton (EDC). Arcuate shaped N and S-verging thrusts, MBSZ-Mettur Shear and PCSZ-Gangavalli Shear, respectively across Cauvery Shear zone system (CSZ) in SGT also suggest that the WDC, EDC and SGT might have collided almost simultaneously during 2.6–2.5 Ga due to NW–SE directed compressional forces with CSZ as central core complex in plate tectonics paradigm preserving rocks of oceanic affinity. Gravity anomalies of schist belts of WDC suggest marginal and intra arc basin setting.The gravity highs of EGFB along east coast of India and regional gravity low over East Antarctica are attributed to thrusted high-density lower crustal/upper mantle rocks at a depth of 5–6 km along W-verging thrust, which is supported by high seismic velocity and crustal thickening, respectively. It may represent a collision zone at about 1.0 Ga between India and East Antarctica. Paired gravity anomalies in the central part of Sri Lanka related to high density intrusives under western margin of Highland Complex and crustal thickening (40 km) along eastern margin of Highland Complex with several arc type magmatic rocks of about 1.0 Ga in Vijayan Complex towards the east may represent collision between them with W-verging thrust as in case of EGFB. The gravity high of Sri Lanka in the central part falls in line with that of EGFB, in case it is fitted in Gulf of Mannar and may represent the extension of this orogeny in Sri Lanka.  相似文献   

4.
A major consequence of the interaction of a plume with an oceanic ridge is the enhanced melt production and associated crust generation. In the case of Iceland crustal thickness as large as 20 to 40 km has been reported. Crustal seismic velocities are high, and have to be explained by thermal or chemical effects. In the first part of the paper we address the question whether extraction of melt out of the plume beneath a slowly spreading ridge and deposition of extracted basalt volumes at the surface produces a dynamic feedback mechanism on mantle melting. To study this question we solve the convection equations for a ridge centred plume with non-Newtonian rheology including melting, melt extraction associated with deposition of cold crust at the surface of the model, and using a simplified approach for compaction. The assumption of cold crust is justified if the thickness of each deposited basaltic layer is less than roughly 1 km. Depending on the buoyancy flux of the plume, crustal thicknesses between 10 and 40 km are modelled, showing characteristic dipping structures resembling the rift-ward dipping basaltic layers of East- and Western Iceland. Comparing the resulting crustal thickness and magma generation rate with models in which the dynamic effect of crust deposition has been suppressed indicates, that melt generation beneath a slowly spreading ridge is considerably damped by the dynamic feedback mechanism if the plume buoyancy flux exceeds 400 to 600 kg/s. Based on the observed crustal thickness of Iceland our models predict a plume buoyancy flux of 1140 kg/s.In the second part we study the accretion of the Icelandic crust by a thermo-mechanical model in more detail based on the Navier–Stokes-, the heat transport and the mass conservation equations including volumetric sources. Hot (1200 °C) molten crustal material is injected into the newly forming crust with a constant rate at different crustal source regions: a) deep, widespread emplacement of dykes and sills including crustal underplating, b) magma chambers at shallow to mid-crustal level, and c) surface extrusions and intrusions in fissure swarms at shallow depth connected to volcanic centres. We identify the material from the different source regions by a marker approach. Varying the relative dominance of these source regions, characteristic crustal structures evolve, showing shallow dipping upper crustal layers with dip angles between 10 and 15°. The thermal structure of the crust varies between cold crust (shallow-source region dominating) and hot crust (deep-source region dominating). We use observations of maximum depth of seismicity to constrain the depth of the 650 °C isotherm and seismological inferences on the lower crust to constrain temperatures in that region. The best agreement with our models is achieved for crust formation dominated by deep dykes and underplating with a considerable influence of magma chamber accretion.  相似文献   

5.
From surface and subsurface data, line-length and area balancing were used to construct four balanced and restored sections of the Pyrenees. In the Mesozoic cover, a thin-skinned tectonic model is used. In the basement an anticlinal stack geometry is applied for the foreland part of the thrust nappes. We present and discuss three possible models for the deep structures of the belt: a thin-skinned tectonic model, a thick-skinned tectonic model and an inhomogeneous strain model. The thrusts steepen downwards and the displacements die out in ductile deformation deep in the section. Therefore, we use the inhomogeneous strain model and we equal-area balance the surface of the continental crust.Hanging-wall sequence diagrams are constructed taking into account (1) the strong N-S thickness variations of the Mesozoic cover related to the Cretaceous drift of Spain and (2) the related crustal thinning of the North Pyrenean Zone superimposed upon a previous late Hercynian rise of the lower crust.The Moho step at the vertical of the North Pyrenean Fault results from the thinning of the North Pyrenean Zone. The thickening of both the Axial Zone and the North Pyrenean Zone during the Eocene compressional event preserved the step geometry.Calculated values of the minimum shortening range from 55 km in the western part of the belt to 80 km in the eastern part. Most of the shortening occurs south of the North Pyrenean Fault in the eastern part (Axial Zone) and north of the North Pyrenean Fault in the western part (Labourd thrust).  相似文献   

6.
The eastern margin of the Variscan belt in Europe comprises plate boundaries between continental blocks and terranes formed during different tectonic events. The crustal structure of that complicated area was studied using the data of the international refraction experiments CELEBRATION 2000 and ALP 2002. The seismic data were acquired along SW–NE oriented refraction and wide-angle reflection profiles CEL10 and ALP04 starting in the Eastern Alps, passing through the Moravo-Silesian zone of the Bohemian Massif and the Fore-Sudetic Monocline, and terminating in the TESZ in Poland. The data were interpreted by seismic tomographic inversion and by 2-D trial-and-error forward modelling of the P waves. Velocity models determine different types of the crust–mantle transition, reflecting variable crustal thickness and delimiting contacts of tectonic units in depth. In the Alpine area, few km thick LVZ with the Vp of 5.1 km s− 1 dipping to the SW and outcropping at the surface represents the Molasse and Helvetic Flysch sediments overthrust by the Northern Calcareous Alps with higher velocities. In the Bohemian Massif, lower velocities in the range of 5.0–5.6 km s− 1 down to a depth of 5 km might represent the SE termination of the Elbe Fault Zone. The Fore-Sudetic Monocline and the TESZ are covered by sediments with the velocities in the range of 3.6–5.5 km s− 1 to the maximum depth of 15 km beneath the Mid-Polish Trough. The Moho in the Eastern Alps is dipping to the SW reaching the depth of 43–45 km. The lower crust at the eastern margin of the Bohemian Massif is characterized by elevated velocities and high Vp gradient, which seems to be a characteristic feature of the Moravo-Silesian. Slightly different properties in the Moravian and Silesian units might be attributed to varying distances of the profile from the Moldanubian Thrust front as well as a different type of contact of the Brunia with the Moldanubian and its northern root sector. The Moho beneath the Fore-Sudetic Monocline is the most pronounced and is interpreted as the first-order discontinuity at a depth of 30 km.  相似文献   

7.
A comparison is made between the Gavarnie thrust and the Mérens Fault in the Axial zone of the Pyrenees. The former has a gentle dip and quite a large displacement (at least 12 km) but does not cut through either Hercynian or Alpine isograds. The latter has a smaller displacement (~ 5 km) but dips steeply and cuts through both Hercynian and Alpine isograds at a high angle. On this basis and on the basis of shear zone geometries immediately north of it, it is proposed that the Mérens Fault nucleated as a steeply (65°–80°) dipping structure, while the Gavarnie thrust nucleated with a shallow attitude. The Mérens Fault is not a backward-rotated thrust fault, nor is it the root zone for any major nappe structure. Similar steep ductile structures occur within the Gavarnie nappe and may reflect considerable internal strain in basement lithologies.The relationship between steep and shallow structures is not yet clear; the shear zones may pre-date the thrusting in which case they may be thick-skinned structures affecting the whole lithosphere, or they may be contemporary with thrusting reflecting only local thickening above a décollement.Rheological models can be used to test proposed geometrical and kinematic models for the lithosphere-scale evolution of the Pyrenees. Suggested models are dominated by a cool, rigid, high-level mantle wedge beneath the North Pyrenean zone which probably controlled the location of north-dipping thrust faults. Thick-skinned shortening is possible in thick crust in the Axial zone but is very unlikely in the North Pyrenean zone where steeply rooted structures would have to cut through the strongest part of the lithosphere.  相似文献   

8.
The 1000-km-long Darlag–Lanzhou–Jingbian seismic refraction profile is located in the NE margin of the Tibetan plateau. This profile crosses the northern Songpan-Ganzi terrane, the Qinling-Qilian fold system, the Haiyuan arcuate tectonic region, and the stable Ordos basin. The P-wave and S-wave velocity structure and Poisson's ratios reveal many significant characteristics in the profile. The crustal thickness increases from northeast to southwest. The average crustal thickness observed increases from 42 km in the Ordos basin to 63 km in the Songpan-Ganzi terrane. The crust becomes obviously thicker south of the Haiyuan fault and beneath the West-Qinlin Shan. The crustal velocities have significant variations along the profile. The average P-wave velocities for the crystalline crust vary between 6.3 and 6.4 km/s. Beneath the Songpan-Ganzi terrane, West-Qinling Shan, and Haiyuan arcuate tectonic region P-wave velocities of 6.3 km/s are 0.15 km/s lower than the worldwide average of 6.45 km/s. North of the Kunlun fault, with exclusion of the Haiyuan arcuate tectonic region, the average P-wave velocity is 6.4 km/s and only 0.5 km/s lower than the worldwide average. A combination of the P-wave velocity and Poisson's ratio suggests that the crust is dominantly felsic in composition with an intermediate composition at the base. A mafic lower crust is absent in the NE margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordos basin. There are low velocity zones in the West-Qinling Shan and the Haiyuan arcuate tectonic region. The low velocity zones have low S-wave velocities and high Poisson's ratios, so it is possible these zones are due to partial melting. The crust is divided into two layers, the upper and the lower crust, with crustal thickening mainly in the lower crust as the NE Tibetan plateau is approached. The results in the study show that the thickness of the lower crust increases from 22 to 38 km as the crustal thickness increases from 42 km in the Ordos basin to 63 km in the Songpan-Ganzi terrane south of the Kunlun fault. Both the Conrad discontinuity and Moho in the West-Qinling Shan and in the Haiyuan arcuate tectonic region are laminated interfaces, implying intense tectonic activity. The arcuate faults and large earthquakes in the Haiyuan arcuate tectonic region are the result of interaction between the Tibetan plateau and the Sino–Korean and Gobi Ala Shan platforms.  相似文献   

9.
The Azores archipelago (Portugal) is located on an oceanic plateau, in a geodynamic environment prone to intense seismic and volcanic activity. In order to investigate the crustal structure in this region, we have conducted a local earthquake tomography study in the area of the islands of Faial, Pico and S. Jorge using data recorded in July 1998. The July 9th 1998 earthquake, near Faial Island, triggered an aftershock sequence of thousands of events that lasted for several months and were recorded by a total of 14 stations located on the three islands surrounding the epicentral area. In the upper crustal layers, consistency is seen between the tomographic results and the islands' surface volcanic units. Beneath the Faial central volcano a low Vp (< 6.0 km/s) anomaly roughly located at 3–7 km depth, suggests a connection to the plumbing system, possibly the presence of a magma chamber. In NE Faial, a high Vp (> 6.3 km/s) body was found located at mid-lower crust, most likely an intrusion of gabbroic composition, that is bordered by the registered seismic activity; its shape suggesting a tectonic controlled mechanism. The relocated hypocenters, together with the overall analysis of the Tomographic model, suggest a tectonic segmentation of Faial Island. The crustal thickness under the islands volcanic buildings of the Faial–Pico area was estimated at around 14 km.  相似文献   

10.
We present velocity models determined by inverting refracted and reflected arrivals along two active source lines in the Changbaishan volcanic region, NE China. We resolve a prominent low-velocity zone (LVZ) in the crust, with velocities as low as 5.4 km/s. Away from the LVZ, the velocity gradients in the crust are relatively smooth, with average P-wave velocities of about 6.0–6.5 km/s. The Moho is at about 35 km depth, thickening to about 40 km under the Tianchi volcano, and thinning to about 30 km under the LVZ. The LVZ is located about 30–60 km to the north of the summit of the Tianchi volcano (the most recently active volcano in the region), is about 30–75 km in north–south extent, is at most 35 km in east–west extent, and is in the depth range of about 10–25 km below the surface. We use these results to constrain receiver function inversions, and show that the receiver functions in the region are compatible with our findings. With these data alone, the significance of the LVZ in non-unique, although we do not see any evidence to support the presence of partial melt in the crust, and favor the interpretation that the LVZ indicates a residual crustal magma chamber.  相似文献   

11.
Crustal structure of mainland China from deep seismic sounding data   总被引:18,自引:0,他引:18  
Since 1958, about ninety seismic refraction/wide angle reflection profiles, with a cumulative length of more than sixty thousand kilometers, have been completed in mainland China. We summarize the results in the form of (1) a new contour map of crustal thickness, (2) fourteen representative crustal seismic velocity–depth columns for various tectonic units, and, (3) a Pn velocity map. We found a north–south-trending belt with a strong lateral gradient in crustal thickness in central China. This belt divides China into an eastern region, with a crustal thickness of 30–45 km, and a western region, with a thickness of 45–75 km. The crust in these two regions has experienced different evolutionary processes, and currently lies within distinct tectonic stress fields. Our compilation finds that there is a high-velocity (7.1–7.4 km/s) layer in the lower crust of the stable Tarim basin and Ordos plateau. However, in young orogenic belts, including parts of eastern China, the Tianshan and the Tibetan plateau, this layer is often absent. One exception is southern Tibet, where the presence of a high-velocity layer is related to the northward injection of the cold Indian plate. This high-velocity layer is absent in northern Tibet. In orogenic belts, there usually is a low-velocity layer (LVL) in the crust, but in stable regions this layer seldom exists. The Pn velocities in eastern China generally range from 7.9 to 8.1 km/s and tend to be isotropic. Pn velocities in western China are more variable, ranging from 7.7 to 8.2 km/s, and may display azimuthal anisotropy.  相似文献   

12.
S.B. Lyngsie  H. Thybo   《Tectonophysics》2007,429(3-4):201-227
We present a new model for the lithospheric structure of the transitions between Laurentia, Avalonia and Baltica in the North Sea, northwestern Europe based on 2¾D potential field modelling of MONA LISA profile 3 across the Central Graben, with constraints from seismic P-wave velocity models and the crustal normal incidence reflection section along the profile. The model shows evidence for the presence of upper-and lower Palaeozoic sedimentary rocks as well as differences in crustal structure between the palaeo-continents Laurentia, Avalonia and Baltica. Our new model, together with previous results from transformations of the gravity and magnetic fields, demonstrates correlation between crustal magnetic domains along the profile and the terrane affinity of the crust. This integrated interpretation indicates that a 150 km wide zone, characterized by low-grade metamorphosis and oblique thrusting of Avalonia crust over Baltica lower crust, is characteristic for the central North Sea area. The magnetic susceptibility and the density across the Coffee Soil Fault range from almost zero and 2715 kg/m3 in Avalonia crust to 0.05 SI and 2775 kg/m3 in Baltica crust. The model of MONA LISA profile 3 indicates that the transition between Avalonia and Baltica is located beneath the Central Graben with a ramp–flat–ramp geometry. Our results indicate that the initial rifting of the Central Graben and the Viking Graben was controlled by the location of the Caledonian collisional suture, located at the Coffee Soil Fault, and that the deep crustal part of Baltica extends further to the west than hitherto believed.  相似文献   

13.
The Ordovician Sierras Pampeanas, located in a continental back-arc position at the Proto-Andean margin of southwest Gondwana, experienced substantial mantle heat transfer during the Ordovician Famatina orogeny, converting Neoproterozoic and Early Cambrian metasediments to migmatites and granites. The high-grade metamorphic basement underwent intense extensional shearing during the Early and Middle Ordovician. Contemporaneously, up to 7000 m marine sediments were deposited in extensional back-arc basins covering the pre-Ordovician basement. Extensional Ordovician tectonics were more effective in mid- and lower crustal migmatites than in higher levels of the crust. At a depth of about 13 km the separating boundary between low-strain solid upper and high-strain lower migmatitic crust evolved to an intra-crustal detachment. The detachment zone varies in thickness but does not exceed about 500 m. The formation of anatectic melt at the metamorphic peak, and the resulting drop in shear strength, initiated extensional tectonics which continued along localized ductile shear zones until the migmatitic crust cooled to amphibolite facies P–T conditions. P–T–d–t data in combination with field evidence suggest significant (ca. 52%) crustal thinning below the detachment corresponding to a thinning factor of 2.1. Ductile thinning of the upper crust is estimated to be less than that of the lower crust and might range between 25% and 44%, constituting total crustal thinning factors of 1.7–2.0. While the migmatites experienced retrograde decompression during the Ordovician, rocks along and above the detachment show isobaric cooling. This suggests that the magnitude of upper crustal extension controls the amount of space created for sediments deposited at the surface. Upper crustal extension and thinning is compensated by newly deposited sediments, maintaining constant pressure at detachment level. Thinning of the migmatitic lower crust is compensated by elevation of the crust–mantle boundary. The degree of mechanical coupling between migmatitic lower and solid upper crust across the detachment zone is the main factor controlling upper crustal extension, basin formation, and sediment thickness in the back-arc basin. The initiation of crustal extension in the back-arc, however, crucially depends on the presence of anatectic melt in the middle and lower crust. Consumption of melt and cooling of the lower crust correlate with decreasing deposition rates in the sedimentary basins and decreasing rates of crustal extension.  相似文献   

14.
Seismic reflection profiles from three different surveys of the Cascadia forearc are interpreted using P wave velocities and relocated hypocentres, which were both derived from the first arrival travel time inversion of wide-angle seismic data and local earthquakes. The subduction decollement, which is characterized beneath the continental shelf by a reflection of 0.5 s duration, can be traced landward into a large duplex structure in the lower forearc crust near southern Vancouver Island. Beneath Vancouver Island, the roof thrust of the duplex is revealed by a 5–12 km thick zone, identified previously as the E reflectors, and the floor thrust is defined by a short duration reflection from a < 2-km-thick interface at the top of the subducting plate. We show that another zone of reflectors exists east of Vancouver Island that is approximately 8 km thick, and identified as the D reflectors. These overlie the E reflectors; together the two zones define the landward part of the duplex. The combined zones reach depths as great as 50 km. The duplex structure extends for more than 120 km perpendicular to the margin, has an along-strike extent of 80 km, and at depths between 30 km and 50 km the duplex structure correlates with a region of anomalously deep seismicity, where velocities are less than 7000 m s− 1. We suggest that these relatively low velocities indicate the presence of either crustal rocks from the oceanic plate that have been underplated to the continent or crustal rocks from the forearc that have been transported downward by subduction erosion. The absence of seismicity from within the E reflectors implies that they are significantly weaker than the overlying crust, and the reflectors may be a zone of active ductile shear. In contrast, seismicity in parts of the D reflectors can be interpreted to mean that ductile shearing no longer occurs in the landward part of the duplex. Merging of the D and E reflectors at 42–46 km depth creates reflectivity in the uppermost mantle with a vertical thickness of at least 15 km. We suggest that pervasive reflectivity in the upper mantle elsewhere beneath Puget Sound and the Strait of Georgia arises from similar shear zones.  相似文献   

15.
Qunshu Tang  Ling Chen   《Tectonophysics》2008,455(1-4):43-52
We have used Rayleigh wave dispersion analysis and inversion to produce a high resolution S-wave velocity imaging profile of the crust and uppermost mantle structure beneath the northeastern boundary regions of the North China Craton (NCC). Using waveform data from 45 broadband NCISP stations, Rayleigh wave phase velocities were measured at periods from 10 to 48 s and utilized in subsequent inversions to solve for the S-wave velocity structure from 15 km down to 120 km depth. The inverted lower crust and uppermost mantle velocities, about 3.75 km/s and 4.3 km/s on average, are low compared with the global average. The Moho was constrained in the depth range of 30–40 km, indicating a typical crustal thickness along the profile. However, a thin lithosphere of no more than 100 km was imaged under a large part of the profile, decreasing to only ~ 60 km under the Inner Mongolian Axis (IMA) where an abnormally slow anomaly was observed below 60 km depth. The overall structural features of the study region resemble those of typical continental rift zones and are probably associated with the lithospheric reactivation and tectonic extension widespread in the eastern NCC during Mesozoic–Cenozoic time. Distinctly high velocities, up to ~ 4.6 km/s, were found immediately to the south of the IMA beneath the northern Yanshan Belt (YSB), extending down to > 100-km depth. The anomalous velocities are interpreted as the cratonic lithospheric lid of the region, which may have not been affected by the Mesozoic–Cenozoic deformation process as strongly as other regions in the eastern NCC. Based on our S-wave velocity structural image and other geophysical observations, we propose a possible lithosphere–asthenosphere interaction scenario at the northeastern boundary of the NCC. We speculate that significant undulations of the base of the lithosphere, which might have resulted from the uneven Mesozoic–Cenozoic lithospheric thinning, may induce mantle flows concentrating beneath the weak IMA zone. The relatively thick lithospheric lid in the northern YSB may serve as a tectonic barrier separating the on-craton and off-craton regions into different upper mantle convection systems at the present time.  相似文献   

16.
We construct fine-scale 3D P- and S-wave velocity structures of the crust and upper mantle beneath the whole Japan Islands with a unified resolution, where the Pacific (PAC) and Philippine Sea (PHS) plates subduct beneath the Eurasian (EUR) plate. We can detect the low-velocity (low-V) oceanic crust of the PAC and PHS plates at their uppermost part beneath almost all the Japan Islands. The depth limit of the imaged oceanic crust varies with the regions. High-VP/VS zones are widely distributed in the lower crust especially beneath the volcanic front, and the high strain rate zones are located at the edge of the extremely high-VP/VS zone; however, VP/VS at the top of the mantle wedge is not so high. Beneath northern Japan, we can image the high-V subducting PAC plate using the tomographic method without any assumption of velocity discontinuities. We also imaged the heterogeneous structure in the PAC plate, such as the low-V zone considered as the old seamount or the highly seismic zone within the double seismic zone where the seismic fault ruptured by the earthquake connects the upper and lower layer of the double seismic zone. Beneath central Japan, thrust-type small repeating earthquakes occur at the boundary between the EUR and PHS plates and are located at the upper part of the low-V layer that is considered to be the oceanic crust of the PHS plate. In addition to the low-V oceanic crust, the subducting high-V PAC plate is clearly imaged to depths of approximately 250 km and the subducting high-V PHS zone to depths of approximately 180 km is considered to be the PHS plate. Beneath southwestern Japan, the iso-depth lines of the Moho discontinuity in the PHS plate derived by the receiver function method divide the upper low-V layer and lower high-V layer of our model at depths of 30–50 km. Beneath Kyushu, the steeply subducting PHS plate is clearly imaged to depths of approximately 250 km with high velocities. The high-VP/VS zone is considered as the lower crust of the EUR plate or the oceanic crust of the PHS plate at depths of 25–35 km and the partially serpentinized mantle wedge of the EUR plate at depths of 30–45 km beneath southwestern Japan. The deep low-frequency nonvolcanic tremors occur at all parts of the high-VP/VS zone—within the zone, the seaward side, and the landward side where the PHS plate encounters the mantle wedge of the EUR plate. We prove that we can objectively obtain the fine-scale 3D structure with simple constraints such as only 1D initial velocity model with no velocity discontinuity.  相似文献   

17.
Alpine‐type orogens are interpreted to result from the collision of former rifted margins. As many present‐day rifted margins consist of hyper‐extended domains floored by thinned continental crust (<10 km) and/or exhumed mantle, this study explores the influence of rift inheritance on the architecture and final evolution of Alpine‐type orogens. We propose that rift‐related necking zones, separating weakly thinned 25‐ to 30‐km‐thick crust from hyper‐extended domains, may act as buttresses during the transition from subduction to collision. As a result, former necking zones may now be found at the boundary between a highly deformed and overthickened nappe stack, made of relics of hyper‐extended domains, and an external, weakly deformed fold‐and‐thrust belt, which largely escaped significant rift‐related crustal thinning and orogeny‐related thickening. Therefore, the role of rift inheritance is of critical importance and is largely underestimated in controlling the architecture and evolution of Alpine‐type orogens.  相似文献   

18.
A combined gravity map over the Indian Peninsular Shield (IPS) and adjoining oceans brings out well the inter-relationships between the older tectonic features of the continent and the adjoining younger oceanic features. The NW–SE, NE–SW and N–S Precambrian trends of the IPS are reflected in the structural trends of the Arabian Sea and the Bay of Bengal suggesting their probable reactivation. The Simple Bouguer anomaly map shows consistent increase in gravity value from the continent to the deep ocean basins, which is attributed to isostatic compensation due to variations in the crustal thickness. A crustal density model computed along a profile across this region suggests a thick crust of 35–40 km under the continent, which reduces to 22/20–24 km under the Bay of Bengal with thick sediments of 8–10 km underlain by crustal layers of density 2720 and 2900/2840 kg/m3. Large crustal thickness and trends of the gravity anomalies may suggest a transitional crust in the Bay of Bengal up to 150–200 km from the east coast. The crustal thickness under the Laxmi ridge and east of it in the Arabian Sea is 20 and 14 km, respectively, with 5–6 km thick Tertiary and Mesozoic sediments separated by a thin layer of Deccan Trap. Crustal layers of densities 2750 and 2950 kg/m3 underlie sediments. The crustal density model in this part of the Arabian Sea (east of Laxmi ridge) and the structural trends similar to the Indian Peninsular Shield suggest a continent–ocean transitional crust (COTC). The COTC may represent down dropped and submerged parts of the Indian crust evolved at the time of break-up along the west coast of India and passage of Reunion hotspot over India during late Cretaceous. The crustal model under this part also shows an underplated lower crust and a low density upper mantle, extending over the continent across the west coast of India, which appears to be related to the Deccan volcanism. The crustal thickness under the western Arabian Sea (west of the Laxmi ridge) reduces to 8–9 km with crustal layers of densities 2650 and 2870 kg/m3 representing an oceanic crust.  相似文献   

19.
A tectonic model of Alpine Corsica is proposed based on geological studies. Its evolution starts after the Jurassic with intraoceanic subduction, followed by mid-Cretaceous subduction of the European continental margin under the oceanic segment of the Adriatic plate. After subduction of the continental crust to a depth of ≈ 150 km, slices of crustal material are buoyantly uplifted together with high-pressure oceanic rocks (ophiolites and 'schistes lustrés'). High pressure–low temperature continental gneiss units overthrust the outer segments of the European crust, while producing a normal sense motion along the upper surface of the rising crustal body. During the Eocene, the closure of the remnant Ligurian oceanic basin separating the proto Corsican belt and Adria, resulted in a second orogenic phase with the emplacement of unmetamorphosed ophiolitic nappes which overthrust the previously exhumed and eroded HP belt. This Corsican model suggests an original evolutionary path for orogenic belts when continental collision is preceded by intraoceanic subduction.  相似文献   

20.
The Rhine Rift System (RRS) forms part of the European Cenozoic Rift System (ECRIS) and transects the Variscan Orogen, Permo-Carboniferous troughs and Late Permian to Mesozoic thermal sag basins. Crustal and lithospheric thicknesses range in the RRS area between 24–36 km and 50–120 km, respectively. We discuss processes controlling the transformation of the orogenically destabilised Variscan lithosphere into an end-Mesozoic stabilised cratonic lithosphere, as well as its renewed destabilisation during the Cenozoic development of ECRIS. By end-Westphalian times, the major sutures of the Variscan Orogen were associated with 45–60 km deep crustal roots. During the Stephanian-Early Permian, regional exhumation of the Variscides was controlled by their wrench deformation, detachment of subducted lithospheric slabs, asthenospheric upwelling and thermal thinning of the mantle-lithosphere. By late Early Permian times, when asthenospheric temperatures returned to ambient levels, lithospheric thicknesses ranged between 40 km and 80 km, whilst the thickness of the crust was reduced to 28–35 km in response to its regional erosional and local tectonic unroofing and the interaction of mantle-derived melts with its basal parts. Re-equilibration of the lithosphere-asthenosphere system governed the subsidence of Late Permian-Mesozoic thermal sag basins that covered much of the RRS area. By end-Cretaceous times, lithospheric thicknesses had increased to 100–120 km. Paleocene mantle plumes caused renewed thermal weakening of the lithosphere. Starting in the late Eocene, ECRIS evolved in the Pyrenean and Alpine foreland by passive rifting under a collision-related north-directed compressional stress field. Following end-Oligocene consolidation of the Pyrenees, west- and northwest-directed stresses originating in the Alps controlled further development of ECRIS. The RRS remained active until the Present, whilst the southern branch of ECRIS aborted in the early Miocene. Extensional strain across ECRIS amounts to some 7 km. Plume-related thermal thinning of the lithosphere underlies uplift of the Rhenish Massif and Massif Central. Lithospheric folding controlled uplift of the Vosges-Black Forest Arch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号