首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zircon and monazite U–Pb data document the geochronology of the felsic crust in the Mozambique Belt in NE Mozambique. Immediately E of Lake Niassa and NW of the Karoo-aged Maniamba Graben, the Ponta Messuli Complex preserves Paleoproterozoic gneisses with granulite-facies metamorphism dated at 1950 ± 15 Ma, and intruded by granite at 1056 ± 11 Ma. This complex has only weak evidence for a Pan-African metamorphism. Between the Maniamba Graben and the WSW–ENE-trending Lurio (shear) Belt, the Unango and Marrupa Complexes consist mainly of felsic orthogneisses dated between 1062 ± 13 and 946 ± 11 Ma, and interlayered with minor paragneisses. In these complexes, an amphibolite- to granulite-facies metamorphism is dated at 953 ± 8 Ma and a nepheline syenite pluton is dated at 799 ± 8 Ma. Pan-African deformation and high-grade metamorphism are more intense and penetrative southwards, towards the Lurio Belt. Amphibolite-facies metamorphism is dated at 555 ± 11 Ma in the Marrupa Complex and amphibolite- to granulite-facies metamorphism between 569 ± 9 and 527 ± 8 Ma in the Unango Complex. Post-collisional felsic plutonism, dated between 549 ± 13 and 486 ± 27 Ma, is uncommon in the Marrupa Complex but common in the Unango Complex. To the south of the Lurio Belt, the Nampula Complex consists of felsic orthogneisses which gave ages ranging from 1123 ± 9 to 1042 ± 9 Ma, interlayered with paragneisses. The Nampula Complex underwent amphibolite-facies metamorphism in the period between 543 ± 23 to 493 ± 8 Ma, and was intruded by voluminous post-collisional granitoid plutons between 511 ± 12 and 508 ± 3 Ma. In a larger context, the Ponta Messuli Complex is regarded as part of the Palaeoproterozoic, Usagaran, Congo-Tanzania Craton foreland of the Pan-African orogen. The Unango, Marrupa and Nampula Complexes were probably formed in an active margin setting during the Mesoproterozoic. The Unango and Marrupa Complexes were assembled on the margin of the Congo-Tanzania Craton during the Irumidian orogeny (ca. 1020–950 Ma), together with terranes in the Southern Irumide Belt. The distinctly older Nampula Complex was more probably linked to the Maud Belt of Antarctica, and peripheral to the Kalahari Craton during the Neoproterozoic. During the Pan-African orogeny, the Marrupa Complex was overlain by NW-directed nappes of the Cabo Delgado Nappe Complex before peak metamorphism at ca. 555 Ma. The nappes include evidence for early Pan-African orogenic events older than 610 Ma, typical for the Eastern Granulites in Tanzania. Crustal thickening at 555 ± 11 Ma is coeval with high-pressure granulite-facies metamorphism along the Lurio Belt at 557 ± 16 Ma. Crustal thickening in NE Mozambique is part of the main Pan-African, Kuunga, orogeny peaking between 570 and 530 Ma, during which the Congo-Tanzania, Kalahari, East Antarctica and India Cratons welded to form Gondwana. Voluminous post-collisional magmatism and metamorphism younger than 530 Ma in the Lurio Belt and the Nampula Complex are taken as evidence of gravitational collapse of the extensive orogenic domain south of the Lurio Belt after ca. 530 Ma. The Lurio Belt may represent a Pan-African suture zone between the Kalahari and Congo-Tanzania Craton.  相似文献   

2.
New SHRIMP U–Pb zircon geochronology and fieldwork integrated with reappraisal of earlier mapping demonstrates that the so-called ‘southern region’ of the mainland Lewisian Gneiss Complex comprises a package of distinct tectono-stratigraphic units. From south to north these are the Rona (3135–2889 Ma), Ialltaig (c. 2000 Ma) and Gairloch (ca. 2200 Ma) terranes. These terranes were metamorphosed and deformed separately until ca. 1670 Ma by which time they had been juxtaposed and were integral with terranes to the north. The northern boundary of the Palaeoproterozoic Gairloch terrane is a shear zone, north of which is the Archaean Gruinard terrane with 2860–2800 Ma protoliths and ca. 2730 Ma granulite facies metamorphism. In contrast, south of the Gairloch terrane, the Archaean gneisses of the Rona terrane have older protolith ages, underwent an anatectic event at ca. 2950 Ma and show no evidence of 2730 Ma granulite facies metamorphism. In current structural interpretations the Gruinard terrane forms a structural klippe over the intervening Gairloch terrane. However, the Rona and Gruinard terranes cannot be equivalent on age grounds, and are interpreted as unrelated different entities. Contained within the southern margin of the Gairloch terrane is the Ialltaig terrane, shown here to comprise an exotic slice of granulite facies Palaeoproterozoic crust, rather than Archaean basement as previously thought. The ca. 1877 Ma granulite facies metamorphism of the Ialltaig terrane is the youngest event that is unique to a single terrane in the mainland Complex, making it an upper estimate for the timing of amalgamation with surrounding tectonic units. U–Pb titanite ages of 1670 ± 12 Ma and ca. 1660 Ma for low-strain zones at Diabaig are interpreted to be cooling through the titanite closure temperature after the amphibolite facies reworking of these southern terranes and the southern margin of the Gruinard Terrane. These new data have implications for the tectonic setting of the mainland in relation to the Outer Hebrides and in the wider evolution of the basement in the North Atlantic.  相似文献   

3.
Granitoids from the central Mawson Escarpment (southern Prince Charles Mountains, East Antarctica) range in age from Archaean to Early Ordovician. U–Pb dating of zircon from these rocks indicates that they were emplaced in three distinct pulses: at 3,519 ± 20, 2,123 ± 12 Ma and between 530 and 490 Ma. The Archaean rocks form a layer-parallel sheet of limited extent observed in the vicinity of Harbour Bluff. This granitoid is of tonalitic-trondhjemitic composition and has a Sr-undepleted, Y-depleted character typical of Archaean TTG suites. εNd and TDM values for these rocks are −2.1 and 3.8 Ga, respectively. Subsequent Palaeoproterozoic intrusions are of granitic composition (senso stricto) with pronounced negative Sr anomalies. These rocks have εNd and TDM values of −4.8 and 2.87 Ga, indicating that these rocks were probably melted from an appreciably younger source than that tapped by the Early Archaean orthogneiss. The remaining intrusions are of Early Cambrian to Ordovician age and were emplaced coincident with the major orogenic event observed in this region. Cambro–Ordovician intrusive activity included the emplacement of layer-parallel pre-deformational granite sheets at approximately 530 Ma, and the intrusion of cross cutting post-tectonic granitic and pegmatitic dykes at ca. 490 Ma. These intrusive events bracket middle- to upper-amphibolite facies deformation and metamorphism, the age of which is constrained to ca. 510 Ma—the age obtained from a syn-tectonic leucogneiss. Nd–Sr isotope data from the more felsic Cambro–Ordovican intrusions (SiO2 > 70 wt%), represented by the post-tectonic granite and pegmatite dykes, suggest these rocks were derived from Late Archaean or Palaeoproterozoic continental crust (TDM ∼ 3.5–2.3 Ga, εNd ∼ −21.8 to −25.9) not dissimilar to that tapped by the Early Proterozoic intrusions. In contrast, the compositionally more intermediate rocks (SiO2 < 65 wt%), represented by the metaluminous pre-tectonic Turk orthogneiss, appear to have melted from a notably younger lithospheric or depleted mantle source (TDM = 1.91 Ga, εNd ∼ −14.5). The Turk orthogneiss additionally shows isotopic (low 143Nd/144Nd and low 87Sr/86Sr) and geochemical (high Sr/Y) similarities to magmas generated at modern plate boundaries—the first time such a signature has been identified for Cambrian intrusive rocks in this sector of East Antarctica. These data demonstrate that: (1) the intrusive history of the Lambert Complex differs from that observed in the adjacent tectonic provinces exposed to the north and the south and (2) the geochemical characteristics of the most mafic of the known Cambrian intrusions are supportive of the notion that Cambrian orogenesis occurred at a plate boundary. This leads to the conclusion that the discrete tectonic provinces observed in the southern Prince Charles Mountains were likely juxtaposed as a result of Early Cambrian tectonism.  相似文献   

4.
U–Pb SHRIMP results of 2672 ± 14 Ma obtained on hydrothermal monazite crystals, from ore samples of the giant Morro Velho and Cuiabá Archean orogenic deposits, represent the first reliable and precise age of gold mineralization associated with the Rio das Velhas greenstone belt evolution, in the Quadrilátero Ferrífero, Brazil. In the basal Nova Lima Group, of the Rio das Velhas greenstone belt, felsic volcanic and volcaniclastic rocks have been dated between 2792 ± 11 and 2751 ± 9 Ma, coeval with the intrusion of syn-tectonic tonalite and granodiorite plutons, and also with the metamorphic overprint of older tonalite–trondhjemite–granodiorite crust. Since cratonization and stable-shelf sedimentation followed intrusion of Neoarchean granites at 2612 + 3/− 2 Ma, it is clear that like other granite–greenstone terranes in the world, gold mineralization is constrained to the latest stages of greenstone evolution.  相似文献   

5.
The geology, evolution, and metallogenic potential of the Mesoarchaean Mosquito Creek Basin remains poorly understood, despite the presence of several orogenic gold deposits. The basin is dominated by medium- to coarse-grained, poorly sorted and chemically immature sandstone and conglomerates, characterised by very high Cr/Th, high Th/Sc, and low Zr/Sc relative to average continental crust. These features are consistent with the presence of significant mafic rocks in the source terrain(s), a limited role for sediment recycling, and deposition in an increasingly distal passive margin setting on the southeastern edge of the Palaeo- to Mesoarchaean East Pilbara Terrane.New U–Pb SHRIMP data on 358 detrital zircons indicate a conservative maximum depositional age of 2972 + 14/−37 Ma (robust median; 96.1% confidence). Zircon provenance spectra from conglomeratic rocks near the base of the unit are consistent with substantial derivation from the East Pilbara Terrane, but finer-grained sandstones higher in the stratigraphy appear to have been sourced elsewhere, as their zircon age spectra are not well matched by any of the exposed Pilbara terranes.The Mosquito Creek Basin was deformed before and during collision with the northern edge of the Mesoarchaean Kurrana Terrane, which resulted in the development of macroscopic north-verging folds, thrust faulting, and widespread sub-greenschist to greenschist facies metamorphism. This collisional event probably took place at ca. 2900 Ma, based on two identical Pb–Pb model ages of 2905 ± 9 Ma from epigenetic galena associated with vein-hosted gold–antimony mineralization. The metallogenic potential of the Mosquito Creek Basin remains largely unevaluated; however, the possibility of a passive margin setting and continental basement points to relatively limited potential for the formation of major orogenic gold deposits.  相似文献   

6.
The Epupa Metamorphic Complex constitutes the southwestern margin of the Congo Craton and is exposed in a hilly to mountainous terrain of northwestern Namibia, bordering the Kunene River and extending into southern Angola. It consists predominantly of granitoid gneisses which are migmatized over large areas. This migmatization locally led to anatexis and produced crustal-melt granites such as the Otjitanda Granite. We have undertaken reconnaissance geochemical studies and single zircon U–Pb SHRIMP and Pb–Pb evaporation dating of rocks of the Epupa Complex. The granitoid gneisses, migmatites and anatectic melts are similar in composition and constitute a suite of metaluminous to peraluminous, calc-alkaline granitoids, predominantly with volcanic arc geochemical signatures. The zircon protolith ages for the orthogneisses range from 1861 ± 3 to 1758 ± 3 Ma. Anatexis in the migmatitic Epupa gneisses was dated from a melt patch at 1762 ± 4 Ma, and the anatectic Otjitanda Granite has a zircon age of 1757 ± 4 Ma. Migmatization and anatexis therefore occurred almost immediately after granitoid emplacement and date a widespread high-temperature Palaeoproterozoic event at ∼1760 Ma which has not been recorded elswhere in northern Namibia. The Nd isotopic systematics of all dated samples are surprisingly similar and suggest formation of the protolith from a source region that probably separated from the depleted mantle about 2.4–2.0 Ga ago. A major Archaean component in the source area is unlikely.  相似文献   

7.
The Punta del Este Terrane (eastern Uruguay) lies in a complex Neoproterozoic (Brasiliano/Pan-African) orogenic zone considered to contain a suture between South American terranes to the west of Major Gercino?CSierra Ballena Suture Zone and eastern African affinities terranes. Zircon cores from Punta del Este Terrane basement orthogneisses have U?CPb ages of ca. 1,000?Ma, which indicate an lineage with the Namaqua Belt in Southwestern Africa. U?CPb zircon ages also provide the following information on the Punta del Este terrane: the orthogneisses containing the ca. 1,000?Ma inheritance formed at ca. 750?Ma; in contrast to the related terranes now in Africa, reworking of the Punta del Este Terrane during Brasiliano/Pan-African orogenesis was very intense, reaching granulite facies at ca. 640?Ma. The termination of the Brasiliano/Pan-African orogeny is marked by formation of acid volcanic and volcanoclastic rocks at ca. 570?Ma (Sierra de Aguirre Formation), formation of late sedimentary basins (San Carlos Formation) and then intrusion at ca. 535?Ma of post-tectonic granitoids (Santa Teresa and José Ignacio batholiths). The Punta del Este Terrane and unrelated western terranes represented by the Dom Feliciano Belt and the Río de La Plata Craton were in their present positions by ca. 535?Ma.  相似文献   

8.
The geology of the No 1 and 3 pits at the Ranger Mine in the Pine Creek Inlier (PCI) of Australia is dominated by Palaeoproterozoic volcanic, carbonate and sedimentary sequences that unconformably overlie Archaean granitic gneiss of the Nanambu Complex (2470±50 Ma). These sequences are folded, faulted and sheared, and crosscut by east-trending granite (sensu stricto) dykes and pegmatite veins, and gently dipping N–NE trending mafic dykes of the Oenpelli Dolerite (1690 Ma). Regional metamorphism is to greenschist facies and contact metamorphism is to hornblende-hornfels facies.The rocks of the Ranger Mine have been subjected to at least two phases of ductile–brittle deformation (D2–D3) and one phase of brittle deformation (D4). These events were preceded by regional diastathermal or extension-related metamorphism (D1) and the development of an ubiquitous bedding-parallel cleavage (S1).D2 resulted in the development of NNE–NNW trending mesoscopic folds (F2) and a network of thrusts and dextral reverse shears. The modelled palaeo-stress directions for the emplacement of pegmatite veins suggests that they formed early in D2. D3 resulted in the development of WNW–NW trending mesoscopic folds (F3), a weakly defined axial planar cleavage (S3) and sinistral reactivation of D2 shears. D2–D3 are correlated with deformation during the Maud Creek Event of the Top End Orogeny (1870–1780 Ma), while the emplacement of granite dykes and pegmatite veins is correlated with emplacement of regional granites at 1870–1860 Ma.D4 is associated with brittle deformation and resulted in the development of normal faults and fault breccias during a period of east–west extension. This event is correlated with regional east–west extension during deposition of Palaeo- to Mesoproterozoic platform sequences.The sequence of tectonic events established in this study indicates that uranium-bearing ore shoots in the Ranger No 1 and 3 pits formed during extension in D4, and after emplacement of the Oenpelli Dolerite at 1690 Ma. However, the currently accepted 1737±20 U–Pb Ma age places the mineralising event at time of regional post-orogenic erosion, after the Top End Orogeny and before emplacement of the Oenpelli Dolerite and extension in D4. The U–Pb age is not consistent with Sm–Nd ages for primary uranium mineralisation at Nabarlek and Jabiluka at 1650 Ma [Econ. Geol. 84 (1989) 64] and does not concur with currently accepted regional tectonic data of Johnston [Johnston, J.D., 1984. Structural evolution of the Pine Creek Inlier and mineralisation therein, Northern Territory, Australia. Unpublished PhD Thesis, Monash University, Australia], Needham et al. [Precambrian Res. 40/41 (1988) 543] and others. Consequently, the absolute age of uranium mineralisation at the Ranger Mine is open.  相似文献   

9.
The Danish island of Bornholm is located at the southwestern margin of the Fennoscandian Shield, and features exposed Precambrian basement in its northern and central parts. In this paper, we present new U–Pb zircon and titanite ages for granites and orthogneisses from 13 different localities on Bornholm. The crystallization ages of the protolith rocks all fall within the range 1,475–1,445 Ma (weighted average 207Pb/206Pb ages of zircon). Minor age differences, however, may imply a multi-phase emplacement history of the granitoid complex. The presence of occasional inherited zircons (with ages of 1,700–1,800 Ma) indicates that the Bornholm granitoids were influenced by older crustal material. The east–west fabric observed in most of the studied granites and gneisses, presumably originated by deformation in close connection with the magmatism at 1,470–1,450 Ma. Most titanite U–Pb ages fall between 1,450 and 1,430 Ma, reflecting post-magmatic or post-metamorphic cooling. Granitoid magmatism at ca. 1.45 Ga along the southwestern margin of the East European Craton has previously been reported from southern Sweden and Lithuania. The ages obtained in this study indicate that the Bornholm magmatism also was part of this Mesoproterozoic event.  相似文献   

10.
Archean basement gneisses and supracrustal rocks, together with Neoproterozoic (Sinian) metasedimentary rocks (the Penglai Group) occur in the Jiaobei Terrane at the southeastern margin of the North China Craton. SHRIMP U–Pb zircon dating of an Archean TTG gneiss gave an age of 2541 ± 5 Ma, whereas metasedimentary rocks from the Neoproterozoic Penglai Group yielded a range in zircon ages from 2.9 to 1.8 Ga. The zircons can be broadly divided into three age populations, at: 2.0–1.8 Ga, 2.45–2.1 Ga and >2.5 Ga. Detrital zircon grains with ages >2.6 Ga are few in number and there are none with ages <1.8 Ga. These results indicate that most of the detrital material comes from a Paleoproterozoic source, most likely from the Jianshan and Fenzishan groups, with some material coming from Archean gneisses in the Jiaobei Terrane. An age of 1866 ± 4 Ma for amphibolite-facies hornblende–plagioclase gneiss, forming part of a supracrustal sequence within the Archean TTG gneiss, indicates Late Paleoproterozoic metamorphism. Both the Archean gneiss complex and Penglai metasedimentary rocks resemble previously described components of the Jiao-Liao-Ji orogenic belt and suggest that the Jiaobei Terrane has a North China Craton affinity; they also suggest that the time of collision along the Jiao-Liao-Ji Belt was at 1865 Ma.  相似文献   

11.
Zircons from porphyry and granitoid samples collected in and around the Marymia Gold Mine in the Marymia Inlier, Western Australia, record a complex history. The results of U-Pb studies confirm that the Plutonic Well greenstone belt, and the surrounding granitoid envelope (including a 2,721Lj Ma intrusion), represent an Archaean terrain, which was intruded by high-level, felsic to intermediate porphyries at 2,694lj Ma and potentially also at 2,660dž Ma. Zircon xenocrysts (Sca. 3.35, 2.93 and 2.74 Ga) indicate that there was older crust within, or below, the greenstone belt at the time of porphyry emplacement. Zircons from the granitoid envelope and intrusions within the greenstone belt record subsequent metamorphism and/or hydrothermal activity coeval with magmatism in the Late Archaean (ca. 2.66-2.63 Ga), and peak metamorphism, magmatism and gold mineralisation in the Yilgarn Block. A later period of metamorphism and hydrothermal activity at ca. 1.72 Ga is coeval with orogenesis in the southern Capricorn Orogen. Both the Late Archaean and Palaeoproterozoic thermal events have altered zircons, redistributed trace elements and caused zircon recrystallisation, which is distinctive in its isotope chemistry (in particular Th/U ratios >1) and morphology (e.g. homogeneous in transmitted light and back-scattered electron images, but sector-zoned in cathodoluminescence).  相似文献   

12.
Proterozoic mafic dykes from the southwestern Vestfold Block experienced heterogeneous granulite facies metamorphism, characterized by spotted or fractured garnet‐bearing aggregates in garnet‐absent groundmass. The garnet‐absent groundmass typically preserves an ophitic texture composed of lathy plagioclase, intergranular clinopyroxene and Fe–Ti oxides. Garnet‐bearing domains consist mainly of a metamorphic assemblage of garnet, clinopyroxene, orthopyroxene, hornblende, biotite, plagioclase, K‐feldspar, quartz and Fe–Ti oxides. Chemical compositions and textural relationships suggest that these metamorphic minerals reached local equilibrium in the centre of the garnet‐bearing domains. Pseudosection calculations in the model system NCFMASHTO (Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3) yield PT estimates of 820–870 °C and 8.4–9.7 kbar. Ion microprobe U–Pb zircon dating reveals that the NW‐ and N‐trending mafic dykes were emplaced at 1764 ± 25 and 1232 ± 12 Ma, respectively, whereas their metamorphic ages cluster between 957 ± 7 and 938 ± 9 Ma. The identification of granulite facies mineral inclusions in metamorphic zircon domains is also consistent with early Neoproterozoic metamorphism. Therefore, the southwestern margin of the Vestfold Block is inferred to have been buried to depths of ~30–35 km beneath the Rayner orogen during the late stage of the late Mesoproterozoic/early Neoproterozoic collision between the Indian craton and east Antarctica (i.e. the Lambert Terrane or the Ruker craton including the Lambert Terrane). The lack of penetrative deformation and intensive fluid–rock interaction in the rigid Vestfold Block prevented the nucleation and growth of garnet and resulted in the heterogeneous granulite facies metamorphism of the mafic dykes.  相似文献   

13.
The Amapá Block, southeastern Guiana Shield, represents an Archean block involved in a large Paleoproterozoic belt, with evolution related to the Transamazonian orogenic cycle (2.26 to 1.95 Ga). High spatial resolution dating using an electron-probe microanalyzer (EPMA) was employed to obtain U–Th–Pb chemical ages in monazite of seven rock samples of the Archean basement from that tectonic block, which underwent granulite- and amphibolite-facies metamorphism. Pb–Pb zircon dating was also performed on one sample.Monazite and zircon ages demonstrate that the metamorphic overprinting of the Archean basement occurred during the Transamazonian orogenesis, and two main tectono-thermal events were recorded. The first one is revealed by monazite ages of 2096 ± 6, 2093 ± 8, 2088 ± 8, 2087 ± 3 and 2086 ± 8 Ma, and by the zircon age of 2091 ± 5 Ma, obtained in granulitic rocks. These concordant ages provided a reliable estimate of the time of the granulite-facies metamorphism in the southwest of the Amapá Block and, coupled with petro-structural data, suggest that it was contemporaneous to the development of a thrusting system associated to the collisional stage of the Transamazonian orogenesis, at about 2.10–2.08 Ga.The later event, under amphibolite-facies conditions, is recorded by monazite ages of 2056 ± 7 and 2038 ± 6 Ma, and is consistent with a post-collisional stage, marked by granite emplacement and coeval migmatization of the Archean basement along strike-slip shear zones.  相似文献   

14.
U–Pb single zircon crystallization ages were determined using TIMS and sensitive high resolution ion microprobe (SHRIMP) on samples of granitoid rocks exposed in the Serrinha nucleus granite–greenstone terrane, in NE Brazil. Our data show that the granitoid plutons can be divided into three distinct groups. Group 1 consists of Mesoarchaean (3.2–2.9 Ga) gneisses and N-S elongated TTG (Tonalite-Trondhjemite-Granodiorite) plutons with gneissic borders. Group 2 is represented by ca. 2.15 Ga pretectonic calc-alkaline plutons that are less deformed than group 1. Group 3 is ca. 2.11–2.07 Ga, late to post-tectonic plutons (shoshonite, syenite, K-rich granite and lamprophyre). Groups 2 and 3 are associated with the Transamazonian orogeny. Xenocryst ages of 3.6 Ga, the oldest zircon yet recorded within the São Francisco craton, are found in the group 3 Euclides shoshonite within the Uauá complex and in the group 2 Quijingue trondhjemite, indicating the presence of Paleoarchaean sialic basement.Group 1 gneiss-migmatitic rocks (ca. 3200 Ma) of the Uauá complex constitute the oldest known unit. Shortly afterwards, partial melting of mafic material produced a medium-K calc-alkaline melt, the younger Santa Luz complex (ca. 3100 Ma) to the south. Subsequent TTG melts intruded in different phases now exposed as N-S elongated plutons such as Ambrósio (3162 ± 26 Ma), Araci (3072 ± 2 Ma), Requeijão (2989 ± 11 Ma) and others, which together form a major part of the Archaean nucleus. Some of these plutons have what appear to be intrusive, but are probably remobilized, contacts with the Transamazonian Itapicuru greenstone belt. The older gneissic rocks occur as enclaves within younger Archaean plutons. Thus, serial additions of juvenile material over a period of several hundred m.y. led to the formation of a stable micro-continent by 2.9 Ga. Evidence for Neoarchaean activity is found in the inheritance pattern of only one sample, the group 2 Euclides pluton.Group 2 granitoid plutons were emplaced at 2.16–2.13 Ga in a continental arc environment floored by Mesoarchaean crust. These plutons were subsequently deformed and intruded by late to post-tectonic group 3 alkaline plutons. This period of Transamazonian orogeny can be explained as a consequence of ocean closure followed by collision and slab break-off. The only subsequent magmatism was kimberlitic, probably emplaced during the Neoproterozoic Braziliano event, which sampled older zircon from the basement.  相似文献   

15.
This study presents the first U–Pb zircon data on granitoid basement rocks of the Tatra Mountains, part of the Western Carpathians (Slovakia). The Western Carpathians belong to the Alpine Carpathian belt and constitute the eastern continuation of the Variscides. The new age data thus provide important time constraints for the regional geology of the Carpathians as well as for their linkage to the Variscides. U–Pb single zircon analyses with vapour digestion and cathodoluminescence controlled dating (CLC-method) were obtained from two distinct granitoid suites of the Western Tatra Mountains. The resulting data indicate a Proterozoic crustal source for both rock suites. The igneous precursors of the orthogneisses (older granites) intruded in Lower Devonian (405 Ma) and were generated by partial melting of reworked crustal material during subduction realated processes. In the Upper Devonian (365 Ma), at the beginning of continent–continent collision, the older granites were affected by high-grade metamorphism including partial melting, which caused recrystallisation and new zircon growth. A continental collision was also responsible for the generation of the younger granites (350–360 Ma). The presented data suggest multi-stage granitoid magmatism in the Western Carpathians, related to a complex subduction and collision scenario during the Devonian and Carboniferous. Received: 19 February 1999 / Accepted: 3 December 1999  相似文献   

16.
The Dom Feliciano Belt evolution is reviewed based on cross-sections, space–time diagrams, P-T paths, and Sr–Nd isotopic data of pre-collisional metaigneous rocks. The belt is divided into northern, central and southern sectors, subdivided into tectonic domains, developed at Neoproterozoic pre-, syn- and post-collisional stages. The northern sector foreland pre-collisional setting represents a rift, with tholeiitic (meta)volcanic rocks (∼800 Ma) chronocorrelated to hinterland intermediate and acidic orthogneisses of high-K calc-alkaline arc signature. In contrast, the central sector records a complete section from the forearc towards the back-arc region during pre-collisional times. In the western domain, ophiolites (∼920 Ma) are associated with arc-related orthogneisses and metavolcanic rocks (880–830 Ma; 760–730 Ma). At back-arc position, continental arc-related magmatism (800–780 Ma) is registered by hinterland orthogneisses and central foreland metavolcanic rocks. Ophiolites on the hinterland opposite side comprise two compositional groups, with N-MORB and supra subduction signature, interpreted as a back-arc basin record (∼750 Ma). The pre-Neoproterozoic basement of the whole belt is correlated with the Nico Perez Terrane and Luis Alves Block (Archean to Mesoproterozoic, with Congo Craton affinity). This contrasts with the Piedra Alta Terrane (Rio de La Plata Craton, only Paleoproterozoic), westernmost Uruguay. The suture between the Piedra Alta and Nico Perez terranes is correlated with the suture zone in the westernmost central sector. Transpression affected both foreland and hinterland during collision (660–640 Ma), with high-T/low-P hinterland progressive exhumation, whilst foreland low- to medium-grade correlated sequences record underthrusting. Post-collisional processes included magmatism throughout the belt (640–580 Ma), strain partitioning along strike-slip shear zones, and foreland basin fill. Late tectono-metamorphic and magmatic processes (560–540 Ma) were attributed to the Kalahari Craton collision. Arc magmatism migration due to subduction angle variations suggests modern-style plate tectonics during Gondwana amalgamation. Diachronism and kinematic inversion are characteristic of an oblique convergent multi-plate orogenic system.  相似文献   

17.
The Pirgadikia Terrane in northern Greece forms tectonic inliers within the Vardar suture zone bordering the Serbo-Macedonian Massif to the southwest. It comprises Cadomian basement rocks of volcanic-arc origin and very mature quartz-rich metasedimentary rocks. U–Pb laser ablation sector-field inductively-coupled plasma mass spectrometry analyses of detrital zircons from the latter reveal a marked input from a Cadomian–Pan-African source with minor contribution from Mesoproterozoic, Palaeoproterozoic and Archaean sources. The metasedimentary rocks are correlated with Ordovician overlap sequences at the northern margin of Gondwana on the basis of their maturity and zircon age spectra. The Pirgadikia Terrane can be best interpreted as a peri-Gondwana terrane of Avalonian origin, which was situated close to the Cadomian terranes in the Late Neoproterozoic–Early Palaeozoic, very much like the Istanbul Terrane. The second unit investigated is the Vertiskos Terrane, which constitutes the major part of the Serbo-Macedonian Massif in Greece. It comprises predominantly igneous rocks of Silurian age and minor metasedimentary rocks of unknown age and provenance. U–Pb analyses of detrital zircons from a garnetiferous mica schist of the Vertiskos Terrane indicate derivation from 550 to 1,150 Ma-old source rocks with a major Cadomian peak. This, combined with minor input of >1,950 Ma-old zircons and the absence of ages between ca. 1.2 and 1.7 Ga suggests a NW Africa source. The protolith age of the garnetiferous mica schist is presumably Early Ordovician. One sample of garnet-bearing biotite gneiss, interpreted as meta-igneous rock, comprises predominantly subhedral zircons of igneous origin with late Middle Ordovician to Silurian ages. We suggest that the rock association of the Vertiskos Terrane is part of an ancient active-margin succession of the Hun superterrane, comparable to successions of the Austro- and Intra-Alpine Terranes. The new data of this study provide evidence of occurrences of Avalonia- and Armorica-derived terranes in the Eastern Mediterranean and moreover help to clarify palaeogeographic reconstructions for the peri-Gondwana realm in the Early Palaeozoic.  相似文献   

18.
The results of geological study of the mountain framework of the southern part of the Lambert Glacier, Mawson Escarpment, Eastern Antarctica, are discussed. The studied territory is of key importance for understanding the regional geological history. The Ruker and the Lambert rock complexes have been distinguished at the Mawson Escarpment. The former is subdivided into the Mawson and Menzies groups. The polymetamorphic rocks of the Mawson Group comprise granite gneiss, orthopyroxene gneiss, and crystalline schists dated at >3000 Ma combined with tectonic wedges and blocks of the variegated sequence with ultramafic (komatiitic) rocks. The find of those rocks allows us to suggest that an ancient granite-greenstone domain existed in the territory of the Prince Charles Mts.; this domain is retained only as tectonic wedges amongst granite gneisses of the Mawson and Menzies groups composed of polymetamorphic terrigenous rocks with basic sills. The following sequence of metamorphic mineral assemblages in the Menzies Group has been established: (1) And-Crd ± St, (2) Ky-St-Grt-Bt-Ms, (3) Sil-Grt-Crd. The andalusite-type metamorphism of rocks pertaining to the Menzies Group probably has the same age as greenschist metamorphism of rocks belonging to the Collaboration Group (2917 ± 82–2878 ± 65 Ma at Mt. Ruker). The formation of kyanite-staurolite mineral assemblage (mounts Stinear, Maguire, Rymill; South Mawson Escarpment) might be related to a metamorphic event dated at 2400–2350 Ma. The formation of sillimanite-garnet and sillimanite-cordierite assemblages with staurolite relics correlates in time with emplacement of the MacColly granite 600–500 Ma ago. Polymetamorphic rocks of the Lambert Complex are migmatites and gneisses, often with orthopyroxene relics. Blocks of ultramafic rocks are localized amongst granite gneisses. The superimposed metamorphism of amphibolite and granulite facies took place 1800 Ma ago. The model Nd age of ultramafic rocks (2500 Ma) is treated as the time of emplacement of magma into the rocks of the Lambert Complex. Isotopic and geochemical evidence for Early Paleozoic granulite-facies metamorphism is known.  相似文献   

19.
Structural, metamorphic and geochronological studies of the Chewore Inliers of the Zambezi Belt within the Karoo age Zambezi Rift, allow recognition of a protracted multi-stage evolution, from the Mesoproterozoic to culminating in the Early. Palaeozoic Pan-African Orogeny. Tectono metamorphic events recognised in the Chewore Inliers occur throughout the Zambezi Belt and alternative models for the history of the Zambezi Belt are presented.Four terranes are recognised in the Chewore Inliers, and contacts between them are observed or inferred to be ductile thrusts, along which juxtaposition of the terranes occurred late in the Pan-African metamorphic cycle (M2, at 526 Ma). The oldest portion of the inliers is a metamorphosed sequence of mafic and ultramafic gneisses with an age of 1393 Ma. These constitute what is tentatively called the Ophiolite Terrane, together with closely associated high-P/moderate T schists possibly represents a suture. The other three terranes (Granulite, Zambezi and Quartzite Terranes) experienced a common history of tectonothermal events but show variable degrees of reworking during the latest tectono metamorphic event (M2). Concordant granitic orthogneisses were emplaced at 1087 Ma into supracrustal sequences. No Pan-African supracrustals are recognised in the Chewore Inliers, which are wholly basement gneisses and quartzites that have been reworked during successive orogenies including the Pan-African Orogeny.A high-T/low-P metamorphic event (M1 of possibly 1068–1071 Ma age, with a minimum age of 943 Ma, was responsible for totally recrystallizing the Granulite Terrane during south to north tectonic transport. M1 mineral parageneses are only preserved as inclusion phases and overgrown fabrics in the other terranes. These other terranes were pervasively recrystallised at high-P/moderate T conditions accompanying a clockwise P-T path related to northeast over southwest tectonic transport and crustal over-thickening during the Pan-African metamorphic cycle (M2) at approximately 526 Ma. Reworking of the Granulite Terrane during M2 was minor, leaving M1 fabrics and mineral assemblages preserved with little recrystallization. M2 orogenesis culminated in the juxtaposition of the terranes, rapid uplift through the thermal peak and eventual slow cooling accompanying a multitude of post-tectonic intrusions; pegmatites at 480 Ma, the Chewore Ultramafic Complex and dolerite dykes. The 830 Ma tectonothermal event involving pervasive syn-tectonic granitic orthogneisses in the south Zambezi Belt is not recognised in the Chewore Inliers, suggesting a localised, possibly extensional, regime restricted to the southern part of the Zambezi Belt at 830 Ma.  相似文献   

20.
In the Archaean Murchison Province of Western Australia, granitoid batholiths and plutons that intruded into the ca. 2.7–2.8 Ga and ca. 3.0 Ga greenstone belts can be divided into three major suites. Suite I is a ca. 2.69 Ga monzogranite-granodiorite suite, which was derived from anatexis of old continental crust and occurs as syn-tectonic composite batholiths over the entire province. Suite II is a trondhjemite-tonalite suite (termed I-type) derived from partial melting of subducted basaltic crust, which intruded as syn- to late-tectonic plutons into the greenstone belts in the northeastern part of the province where most of the major gold deposits are situated. One of the Suite II trondhjemite plutons has a Pb−Pb isochron age of 2641±36 Ma, and one of the structurally youngest tonalite plutons has a minimum Pb−Pb isochron age of 2630.1±4.3 Ma. Suite III is a ca. 2.65–2.62 Ga A-type monzogranite-syenogranite suite which is most abundant in the largely unmineralised southwestern part of the province. Gold deposits in the province are mostly hosted in brittle-ductile shear zones, and were formed at a late stage in the history of metamorphism, deformation and granitoid emplacement. At one locality, mineralisation has been dated at 2636.8±4.2 Ma through a pyritetitanite Pb−Pb isochron. Lead and Sr isotope studies of granitoids and gold deposits indicate that, although most gold deposits have initial Pb isotope compositions most closely similar to those of Suite II intrusions, both Suite I and Suite II intrusions or their source regions could have contributed solutes to the ore fluids. These preliminary data suggest that gold mineralisation in the Murchison Province was temporally and spatially associated with Suite II I-type granitoids in the northeastern part of the province. This association is consistent with the concept that Archaean gold mineralisation was related to convergent-style tectonic settings, as generation of both Suite II I-type granitoids and hydrothermal ore fluids could have been linked to the dehydration and partial fusion of subducted oceanic crust, and old sialic crust or its anatectic products may also contribute solutes to the ore fluids. Integration of data from this study with other geological and radiogenic isotope constraints in the Yilgarn Block argue against direct derivation of gold ore fluids from specific I-type granitoid plutons, but favour a broad association with convergent tectonics and granitoid magmatism in the late Archaean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号