首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A catastrophic lahar began on 30 October 1998, as hurricane precipitation triggered a small ?ank collapse of Casita volcano, a complex and probably dormant stratovolcano. The initial rockslide‐debris avalanche evolved on the ?ank to yield a watery debris ?ood with a sediment concentration less than 60 per cent by volume at the base of the volcano. Within 2·5 km, however, the watery ?ow entrained (bulked) enough sediment to transform entirely to a debris ?ow. The debris ?ow, 6 km downstream and 1·2 km wide and 3 to 6 m deep, killed 2500 people, nearly the entire populations of the communities of El Porvenir and Rolando Rodriguez. These ‘new towns’ were developed in a prehistoric lahar pathway: at least three ?ows of similar size since 8330 14C years bp are documented by stratigraphy in the same 30‐degree sector. Travel time between perception of the ?ow and destruction of the towns was only 2·5–3·0 minutes. The evolution of the ?ow wave occurred with hydraulic continuity and without pause or any extraordinary addition of water. The precipitation trigger of the Casita lahar emphasizes the need, in volcano hazard assessments, for including the potential for non‐eruption‐related collapse lahars with the more predictable potential of their syneruption analogues. The ?ow behaviour emphasizes that volcano collapses can yield not only volcanic debris avalanches with restricted runouts, but also mobile lahars that enlarge by bulking as they ?ow. Volumes and hence inundation areas of collapse‐runout lahars can increase greatly beyond their sources: the volume of the Casita lahar bulked to at least 2·6 times the contributing volume of the ?ank collapse and 4·2 times that of the debris ?ood. At least 78 per cent of the debris ?ow matrix (sediment < ?1·0Φ; 2 mm) was entrained during ?ow. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
In October 1998 a precipitation‐triggered flank collapse occurred at Casita volcano, Nicaragua, leading to a devastating lahar. In this paper the failure volume was calculated using a range of methods. Several pre‐ and post‐failure digital elevation models (DEMs) were created, based on photogrammetric, cartometric and surveying data. The wide range in resulting volumes prompted an assessment of the accuracies and potential problems associated with each of the datasets and techniques used. The best estimate for the failure volume is 1·6 × 106 m3. It is based on a vegetation‐corrected pre‐failure DEM, generated using automated digital photogrammetry, and a post‐failure surface based on a field survey carried out with a Total Station. The volume figure is approximately an order of magnitude higher than values reported in previous publications, all of which are based solely on field estimates. This demonstrates that values reported in the literature, if they are not based on rigorous quantitative analysis, must be regarded with caution. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
During Hurricane Mitch in 1998, a debris avalanche occurred at Casita volcano, Nicaragua, resulting in a lahar that killed approximately 2500 people. The failure that initiated the avalanche developed at a pre-existing cliff, part of the headwall of a gravitational slide of approximately 1.8 km2 in plan view that cuts the southern flank of the volcano. Structural analysis, primarily based on a high-resolution DEM, has shown that this slide is caused by edifice deformation. Casita's eastern side is spreading radially outwards, forming a convex–concave profile and steepening original slopes. This deformation is possibly facilitated by millennia of persistent hydrothermal alteration of the volcano's core. The gravity slide has some typical features of smaller slumps, such as steep headwalls, an inner flatter area and a pronounced basal bulge fronted by thrusts. The headwall is the source of the 1998 avalanche, as well as several previous mass movements. Edifice deformation has led to extensive fracturing of the hydrothermally altered andesitic source rock, increasing instability further. Field evidence indicates that the gravity slide is still actively deforming, and with steep headscarps remaining, the hazard of future avalanches is increasing. The analysis presented here shows how small but highly damaging landslides can occur during the deformation of a volcanic edifice. We show that identification of instability is possible with remote sensing data and minimal reconnaissance work, implying the possibility of similar efficient and cost-effective analysis at other volcanoes known to host extensive hydrothermal systems. We demonstrate this with a simple structural analysis of two similar stratovolcanoes, Orosí (Costa Rica) and Maderas (Nicaragua).  相似文献   

4.
Radiocarbon-dated lake sediments provide minimum-limiting ages for two major debris avalanches originating from Mombacho Volcano in Nicaragua. A basal age from Lake El Gancho indicates that the northeast debris avalanche (Las Isletas) occurred sometime before ~140 to 345 A.D. Basal ages from Lakes Blanca and Verde indicate that the southern (El Crater) debris avalanche occurred sometime before ~270 to 650 A.D. Both events therefore occurred in the space of a few centuries, yet there is strong evidence that the mechanisms varied for destabilization of each flank. Possibly, the influence of a developing hydrothermal system lead first to deeper structural failure in the substrata to produce the Las Isletas sector collapse, progressing to higher level destabilization within the edifice and the El Crater collapse.  相似文献   

5.
The eruption of Mount Pinatubo in June 1991 altered the conditions of the surrounding river catchments. Pyroclastic flows and tephra fall were deposited over extensive areas, stripping off the forest cover and burying drainage divides. These recent deposits are very loosely consolidated and generally consist of sand‐sized particles, which commonly mobilize into lahars in response to rainfall of a certain magnitude. Several devastating lahar occurrences have buried settlements covering tens to several hundred square kilometres in a single event. Correlation of storm rainfall intensities and durations with lahar activity as recorded by acoustic flow monitors is used to investigate trends in the initiation conditions for lahar activity. This research confirms that the relationships of rainfall intensity and duration with lahar initiation threshold values are not linear but rather approximate a power relation. Different relations were found for lahar initiation in different years, from 1991 to 1997, as a result of the dynamic changes in hydrologic and geomorphic conditions of the affected catchments. Data from acoustic flow monitors are used to distinguish debris flow and hyperconcentrated flow activity from that of muddy water. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
The standard model of caldera formation is related to the emptying of a magma chamber and ensuing roof collapse during large eruptions or subsurface withdrawal. Although this model works well for numerous volcanoes, it is inappropriate for many basaltic volcanoes (with the notable exception of Hawaii), as these have eruptions that involve volumes of magma that are small compared to the collapse. Many arc volcanoes also have similar oversized depressions, such as Poas (Costa Rica) and Aoba (Vanuatu). In this article, we propose an alternative caldera model based on deep hydrothermal alteration of volcanic rocks in the central part of the edifice. Under certain conditions, the clay-rich altered and pressurized core may flow under its own weight, spread laterally, and trigger very large caldera-like collapse. Several specific mechanisms can generate the formation of such hydrothermal calderas. Among them, we identify two principal modes: mode 1: ripening with summit loading and flank spreading and mode II: unbuttressing with flank subsidence and flank sliding. Processes such as summit loading or flank subsidence may act simultaneously in hybrid mechanisms. Natural examples are shown to illustrate the different modes of formation. For ripening, we give Aoba (Vanuatu) as an example of probable summit loading, while Casita (Nicaragua) is the type example of flank spreading. For unbuttressing, Nuku Hiva Island (Marquesas) is our example for flank subsidence and Piton de la Fournaise (La Réunion) is our example of flank sliding. The whole process is slow and probably needs (a) at least a few tens of thousands of years to deeply alter the edifice and reach conditions suitable for ductile flow and (b) a few hundred years to achieve the caldera collapse. The size and the shape of the caldera strictly mimic that of the underlying weak core. Thus, the size of the caldera is not controlled by the dimensions of the underlying magma reservoir. A collapsing hydrothermal caldera could generate significant phreatic activity and trigger major eruptions from a coexisting magmatic complex. As the buildup to collapse is slow, such caldera-forming events could be detected long before their onset.  相似文献   

7.
The May 22, 1915 eruptions of Lassen Peak involved a volcanic blast and the emplacement of three geographically and temporally distinct lahar deposits. The volcanic blast occurred when a Vulcanian explosion at the summit unroofed a shallow magma source, generating an eruption cloud that rose to an estimated height of 9 km above sea level. The blast cloud was probably caused by the collapse of a small portion of the eruption column; absence of a flank vent associated with these eruptions argues against it originating as an explosion that has been directed by vent geometry or location. The volcanic blast devasted 7 km2 of the northeast flank of the volcano, and emplaced a deposit of juvenile tephra and accidental lithic and mineral fragments. Decrease in blast deposit thickness and median grain size with increasing distance from the vent suggests that the blast cloud lost transport competence as it crossed the devastated area. Scanning electron microscope examination of pyroclasts from the blast deposit indicates that the blast cloud was a dry, turbulent suspension that emplaced a thin deposit which cooled rapidly after deposition. Lahar deposits were emplaced primarily in Lost Creek, with minor lahars flowing down gullies on the west, northwest and north flanks of the volcano. The initial lahar was apparently triggered early in the eruption when the blast cloud melted the residual snowpack as it moved down the northeast flank of the peak. The event that triggered the later lahars is enigmatic; the presence of approximately five times more juvenile dacite bombs on the surface of the later lahars suggests that they may have been triggered by a change in eruption style or dynamics.  相似文献   

8.
Instability of exogenous lava lobes during intense rainfall   总被引:1,自引:1,他引:0  
On many volcanoes, there is evidence of a relationship between dome collapse and periods of high precipitation. We propose a mechanism for this relationship and investigate the conditions that optimize failure by this process. Observations of elongate lobes that evolve through exogenous growth of lava domes reveal that they commonly develop tensile fractures perpendicular to the direction of motion. These cracks can increase in depth by localized cooling and volumetric contraction. During periods of high rainfall, water can fill these cracks, and the increase in fluid pressure on the base of the lobes and within the crack can trigger the collapse of the hot exogenous lava domes. Using limit-equilibrium analysis, it is possible to calculate the water and vapor forces acting on the rear and base of the potentially unstable part of the lobe. The model presented is rectangular in cross-section, with material properties representative of andesitic dome rocks. Vapor pressures at the base of cracks are sealed by the penetrating rainfall, which forms a saturated cap within the lobe. This leads to an increase in fluid pressurization both through the underlying gas pressure and the downslope component of the liquid water cap. Fluid pressurization increases as the penetration depth increases. This rainfall penetration depth is dependent on the thermal properties of the rocks, antecedent temperature, lobe geometry, and the intensity and duration of precipitation. Dominant parameters influencing the stability of the lobe are principally lobe thickness, duration and intensity of rainfall, and antecedent lobe temperature. Our modeling reveals that thicker lobes are intrinsically more unstable due to the amplification of downslope forces in comparison to cohesive strength. The increase in the duration and intensity of rainfall events also increases the potential for collapse, as it leads to deeper liquid penetration. Deeper penetration depths are also achieved through lower antecedent temperatures since less fluid is lost through vaporization. Thus, the potential for rain-triggered collapse increases with time from emplacement.Editorial responsibility: D. Dingwell  相似文献   

9.
The tectonic system of the eastern flank of Mt. Etna volcano (Sicily, Italy) is the source of most of the strongest earthquakes occurring in the area over the last 205 years. A total of 12 events with epicentre intensities ≥VIII EMS have occurred at Mt. Etna, 10 of which were located on the eastern flank. This indicates a mean recurrence time of about 20 years. This area is highly urbanised, with many villages around the volcano at altitudes up to 700 m a.s.l. The southern and eastern flanks are particularly highly populated areas, with numerous villages very close to each other. The probabilistic seismic hazard due to local faults for Mt. Etna was calculated by adopting a site approach to seismic hazard assessment. Only the site histories of local volcano-tectonic earthquakes were considered, leaving out the effects due to strong regional earthquakes that occurred in north-eastern and south-eastern Sicily. The inventory used in this application refers to residential buildings. These data were extracted from the 1991 census of the Italian National Institute of Statistics, and are grouped according to the census sections. The seismic vulnerability of the elements at risk belonging to a given building typology is described by a vulnerability index, in accordance with a damage model based on macroseismic intensities. For the estimation of economic losses due to physical damage to buildings, an integrated impact indicator was used, which is equivalent to the lost building volume. The expected annualised economic earthquake losses were evaluated both in absolute and in relative terms, and were compared with the geographical distribution of seismic hazard and with similar evaluations of losses for other regions.  相似文献   

10.
A general model for Mt. Ruapehu lahars   总被引:1,自引:1,他引:1  
A mathematical model of the motion of lahars is presented. Lahar flows and travel speeds are calculated using a kinematic wave model which equates gravitational accelerations to frictional losses. A chezyor Manning-type law of friction is assumed, in which lahar flow rate is a simple power function of lahar depth, multiplied by another simple power of the chanel slope. Use of the model requires knowledge of essentially only one parameter which appears to be relatively insensitive for flows down a given channel. Variable channel slope effects are removed by a longitudinal scaling which applies to all flows down a given channel. For lahars generated by a single explosive event it is unnecessary to perform numerical calculations to predict lahar flow and travel time, but for lahnars produced by multiple sources in which different lahar flows are interacting, numerical calculations appear necessary. The model is applied to all recorded lahar flows from Mt. Ruapehu, and satisfactorily described all lahar flows generated by a single explosive mechanism. Such flows depend essentially only on total lahar volume. The 1968 Mt. Ruapehu lahar, generated by a series of smaller eruptive mechanisms, was modelled as the interaction of seven point sources of fluid originating from positions mathematically extrapolated up the mountain. Good agreement was obtained between the predicted times of formation of these 1968 lahars, and the times of greatest seismic amplitude.  相似文献   

11.
Titan2D is a depth-averaged, thin-layer computational fluid dynamics (CFD) code, suitable for simulating a variety of geophysical mass flows. Titan2D output data include flow thickness and flow momentum at each time step for all cells traversed by the flow during the simulation. From this information the flow limit, run-out path, flow velocity, deposit thickness, and travel time can be calculated. Results can be visualized in the open-source GRASS GIS software or with the built-in Titan2D viewer. A new two-phase Titan2D version allows simulation of flows containing various mixtures of water and solids. The purpose of this study is to compare simulations by the two-phase flow version of Titan2D with an actual event. The chosen natural flow is a small ash-rich lahar (volume 50,000 m3–70,000 m3) that occurred on 12 February 2005 in the Vazcún Valley, located on the north-east flank of Volcán Tungurahua, Ecuador. Lahars and pyroclastic flows along this valley could potentially threaten the 20,000 inhabitants living in and near the city of Baños. A variety of data sources exist for this lahar, including: post-event meter-scale topography, and photographic, video, seismic and acoustic flow monitoring (AFM) records from during the event. These data permit detailed comparisons between the dynamics of the actual lahar and those of the Titan2D simulated flow. In particular, detailed comparisons are made between run-up heights, flow velocity, inundation area, and flow thickness. Simulations utilize a variety of data derived from field observations such as lahar volume, solid to pore-fluid ratio and pre-event topography. Titan2D is important in modeling lahars because it allows assessment of the impact of the flows on buildings and infrastructure lifelines located near drainages that descend from volcanoes.  相似文献   

12.
The 2013 eruption of Pavlof Volcano, Alaska began on 13 May and ended 49 days later on 1 July. The eruption was characterized by persistent lava fountaining from a vent just north of the summit, intermittent strombolian explosions, and ash, gas, and aerosol plumes that reached as high as 8 km above sea level and on several occasions extended as much as 500 km downwind of the volcano. During the first several days of the eruption, accumulations of spatter near the vent periodically collapsed to form small pyroclastic avalanches that eroded and melted snow and ice to form lahars on the lower north flank of the volcano. Continued lava fountaining led to the production of clastogenic lava flows that extended to the base of the volcano, about 3–4 km beyond the vent. The generation of fountain-fed lava flows was a dominant process during the 2013 eruption; however, episodic collapse of spatter accumulations and formation of hot spatter-rich granular avalanches was a more efficient process for melting snow and ice and initiating lahars. The lahars and ash plumes generated during the eruption did not pose any serious hazards for the area. However, numerous local airline flights were cancelled or rerouted, and trace amounts of ash fall occurred at all of the local communities surrounding the volcano, including Cold Bay, Nelson Lagoon, Sand Point, and King Cove.  相似文献   

13.
In the last 9 years, the amount and the quality of geophysical and volcanological observations of Stromboli's' activity have undergone a marked increase. This new information highlighted that the landslides on the Sciara del Fuoco flank are tightly linked to the volcanic activity. Actually, at the beginning of the December 28, 2002, effusive eruption, the seismic monitoring network was less dense than now, and therefore it is not known if there was an increase in the landslide rate before the eruption. Despite this, it is known that a big landslide occurred 2 days after the beginning of the eruption which caused a tsunami (December 30, 2002). More recently, the effusive eruption in February 2007 was preceded by an increase in landslides on the Sciara del Fuoco flank, which were recorded by the seismological monitoring system that had been improved after the 2002–2003 crisis. These episodes led us to believe that monitoring the Sciara del Fuoco flank instability is an important topic, and that landslides might be significant short-term precursors of effusive eruptions at the Stromboli volcano. To automatically detect landslide signals, we have developed a specialized neural algorithm. This can distinguish between landslides and the other types of seismic signals usually recorded at the Stromboli volcano (i.e., explosion quakes and volcanic tremor). The discrimination results show an average performance of 98.67 %. According to the experience of the crisis of 2007, to identify changes that can be considered as precursors of effusive eruptions, we set up an automatic decision-making method based on the neural network responses. This method can operate on a continuous data stream. It calculates a landslide percentage index (LPI) that depends on the number of records that are classified by the net as landslides over a given time interval. We tested the method on February 27, 2007, including the beginning of the effusive phase. The index showed an increase as early as at 09:00 UTC on that day and reached its maximum value (100 %) at 12:00, about 40 min before the onset of the eruption. After the beginning of the effusive phase, the index remains high due to the blocks that roll down along the slope from the front of the lava flow. On the basis of these tests, we propose a decision-making method that is able to recognize a trend in the LPI similar to that of 2007 eruption, allowing the identification of precursors of effusive phases at the Stromboli volcano.  相似文献   

14.
Ruapehu is a very active andesitic composite volcano which has erupted five times in the past 10 years. Historical events have included phreatomagmatic eruptions through a hot crater lake and two dome-building episodes. Ski-field facilities, road and rail bridges, alpine huts and portions of a major hydroelectrical power scheme have been damaged or destroyed by these eruptions. Destruction of a rail bridge by a lahar in 1953 caused the loss of 151 lives. Other potential hazards, with Holocene analogues, include Strombolian and sub-Plinian explosive eruptions, lava extrusion from summit or flank vents and collapse of portions of the volcano. The greatest hazards would result from renewed phreatomagmatic activity in Crater Lake or collapse of its weak southeastern wall. Three types of hazard zones can be defined for the phreatomagmatic events: inner zones of extreme risk from ballistic blocks and surges, outer zones of disruption to services from fall deposits and zones of risk from lahars, which consist of tongues down major river valleys. Ruapehu is prone to destructive lahars because of the presence of 107 m3 of hot acid water in Crater Lake and because of the surrounding summit glaciers and ice fields. The greatest risks at Ruapehu are to thousands of skiers on the ski field which crosses a northern lahar path. Three early warning schemes have been established to deal with the lahar problems. Collapse of the southeastern confining wall would release much of the lake into an eastern lahar path causing widespread damage. This is a long-term risk which could only be mitigated by drainage of the lake.  相似文献   

15.
This paper uses the catastrophic landslide that occurred in Zhongxing Town, Dujiangyan City, as an example to study the formation mechanism of landslides induced by heavy rainfall in the post-Wenchuan earthquake area. The deformation characteristics of a slope under seismic loading were investigated via a shaking table test. The results show that a large number of cracks formed in the slope due to the tensile and shear forces of the vibrations, and most of the cracks had angles of approximately 45° with respect to the horizontal. A series of flume tests were performed to show how the duration and intensity of rainfall influence the responses of the shaken and non-shaken slopes. Wetting fronts were recorded under different rainfall intensities, and the depth of rainfall infiltration was greater in the shaken slope than in the non-shaken slope because the former experienced a greater extreme rainfall intensity under the same early rainfall and rainfall duration conditions. At the beginning of the rainfall infiltration experiment, the pore water pressure in the slope was negative, and settling occurred at the top of the slope. With increasing rainfall, the pore water pressure changed from negative to positive, and cracks were observed on the back surface of the slope and the shear outlet of the landslide on the front of the slope. The shaken slope was more susceptible to crack formation than the non-shaken slope under the same rainfall conditions. A comparison of the responses of the shaken and non-shaken slopes under heavy rainfall revealed that cracks formed by earthquakes provided channels for infiltration. Soil particles in the cracks of slopes were washed away, and the pore water pressure increased rapidly, especially the transient pore water pressure in the slope caused by short-term concentrated rainfall which decreased rock strength and slope stability.  相似文献   

16.
The impact of road‐generated runoff on the hydrological response of a zero‐order basin was monitored for a sequence of 24 storm events. The study was conducted in a zero‐order basin (C1; 0·5ha) with an unpaved mountain road; an adjacent unroaded zero‐order basin (C2; 0·2 ha) with similar topography and lithology was used to evaluate the hydrological behaviour of the affected zero‐order basin prior to construction of the road. The impact of the road at the zero‐order basin scale was highly dependent on the antecedent soil‐moisture conditions, total storm precipitation, and to some extent rainfall intensity. At the beginning of the monitoring period, during dry antecedent conditions, road runoff contributed 50% of the total runoff and 70% of the peak flow from the affected catchment (C1). The response from the unroaded catchment was almost insignificant during dry antecedent conditions. As soil moisture increased, the road exerted less influence on the total runoff from the roaded catchment. For very wet conditions, the influence of road‐generated runoff on total outflow from the roaded catchment diminished to only 5·4%. Both catchments, roaded and unroaded, produced equivalent amount of outflow during very wet antecedent conditions on a unit area basis. The lag time between the rainfall and runoff peaks observed in the unroaded catchment during the monitoring period ranged from 0 to 4 h depending on the amount of precipitation and antecedent conditions, owing mainly to much slower subsurface flow pathways in the unroaded zero‐order basin. In contrast, the lag time in the roaded zero‐order basin was virtually nil during all storms. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
在前期严重干旱的背景下,2010年6月27~30日广西西北部出现大暴雨过程,大范围积水成涝.降雨量最大的凌云、凤山交界于6月28日17时开始出现密集的微震活动,形成显著的震群事件.自6月28日至7月15日共记录地震2739次,其中2~2.9级(ML,下同)41次,3级以上地震3次,最大为7月1日10时27分3.2级地震...  相似文献   

18.
This paper uses a variety of multivariate statistical techniques in order to improve current understanding of the antecedent and rainfall controls on drainage characteristics for an agricultural underdrained clay site. Using the dataset obtained from a two‐year hillslope study at Wytham (Oxfordshire, UK) a number of patterns in the nature and style of drainage events were explored. First, using principal components analysis, a distinction was drawn between drainflow controlled by antecedent conditions and drainflow controlled by rainfall characteristics. Dimensional analysis then distinguished between two further types of drainflow event: antecedent limited events (ALE) and non‐antecedent limited events (NALE). These were drainflow events requiring a minimum antecedent hydraulic head to occur (ALE) and events that occurred in response to rainfall irrespective of the antecedent conditions, because the rainfall was either of high enough intensity or duration to prompt a response in drainflow (NALE). 2. The dataset also made possible a preliminary investigation into the controls on and types of macropore flow at the site. Principal components analysis identified that rainfall characteristics were more important than antecedent conditions in generating high proportions of macropore flow in drainflow. Of the rainfall characteristics studied, rainfall amount and intensity were the dominant controls on the amount of macropore flow, with duration as a secondary control. Two styles of macropore flow were identified: intensity‐driven and duration‐driven. Intensity‐driven events are characterized by rainfall of high intensity and short duration. During such events the amount of macropore flow is proportional to the rainfall intensity and the interaction between macropore and matrix flow is kinetically limited. The second style of macropore flow is characterized by long‐duration events. For these events the amount of macropore flow approaches a maximum value whatever the rainfall duration. This suggests that these events are characterized by an equilibrium interaction between macropores and matrix flow. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
In subaerial volcaniclastic sequences structures formed by ice blocks can provide information about a volcano's history of lahar generation by glacier melt. At Volcán Hudson in Chile, catastrophic lahars were initiated by eruption-induced melting of glacier ice in August and October 1991. They transported large ice blocks 50 km down the Rio de los Huemules valley to the sea. Large current crescents with lee-side lenses were formed where ice blocks were deposited during waning stages of the flood. When stranded blocks of ice melted, they left cone-shaped and ring-shaped heaps of ice-rafted debris on the sediment surface. Several hundred ice blocks were completely buried within the aggrading lahar sediment, and when these melted circular collapse pits formed in the sediment. Collapse types included subsided coherent blocks of sediment bounded by an outward-dipping ring-fracture, trapdoor structures with horseshoe-shaped fractures, downsag pits with centroclinal dips locally up to 60°, pits with peripheral graben and crevasses, piecemeal (highly fragmented) collapse structures and funnel-shaped pits containing disaggregated sediment. A sequence of progressive collapse is inferred in which initial downsag and subsidence on an outward-dipping ring fracture produces a small diameter pit. This is followed by widening of the pit by progressive development of concentric ring fractures and downsag outside the early formed pit, and by collapse of overhanging pit walls to produce vertical to inward-dipping walls and aprons of collapse debris on the pit floor. The various structures have potential for preservation even in regions prone to high rainfall and flooding, and they can be used to indicate that former lahars contained abundant blocks of ice.  相似文献   

20.
To predict the long‐term sustainability of water resources on the Boreal Plain region of northern Alberta, it is critical to understand when hillslopes generate runoff and connect with surface waters. The sub‐humid climate (PET) and deep glacial sediments of this region result in large available soil storage capacity relative to moisture surpluses or deficits, leading to threshold‐dependent rainfall‐runoff relationships. Rainfall simulation experiments were conducted using large magnitude and high intensity applications to examine the thresholds in precipitation and soil moisture that are necessary to generate lateral flow from hillslope runoff plots representative of Luvisolic soils and an aspen canopy. Two adjacent plots (areas of 2·95 and 3·4 m2) of contrasting antecedent moisture conditions were examined; one had tree root uptake excluded for two months to increase soil moisture content, while the second plot allowed tree uptake over the growing season resulting in drier soils. Vertical flow as drainage and soil moisture storage dominated the water balances of both plots. Greater lateral flow occurred from the plot with higher antecedent moisture content. Results indicate that a minimum of 15–20 mm of rainfall is required to generate lateral flow, and only after the soils have been wetted to a depth of 0·75 m (C‐horizon). The depth and intensity of rainfall events that generated runoff > 1 mm have return periods of 25 years or greater and, when combined with the need for wet antecendent conditions, indicate that lateral flow generation on these hillslopes will occur infrequently. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号