首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 472 毫秒
1.
选取植被健康指数(Vegetation health index,VHI)为农业干旱程度衡量指标,利用MannKendall(M-K)检验法和小波分析法对河湟谷地2000—2020年农作物生长季(3—11月)干旱程度进行逐年和逐季节研究(以3—5月为春季、6—8月为夏季、9—11月为秋季)。结果表明:(1)河湟谷地农业干旱区主要集中在大通河中游地区、湟水河干流区和黄河谷地。(2)河湟谷地农业干旱面积呈现明显的地域分异特点,由北到南农业干旱面积逐渐增大。(3)河湟谷地农业干旱面积在年际尺度上有在周期性波动中不断减小的趋势,2007—2008年是河湟谷地农业干旱面积发生突变的时间点,此后河湟谷地农业干旱面积开始急剧减少;春季是河湟谷地受农业干旱影响最严重的季节。研究结果对掌握河湟谷地农业干旱空间分布及变化趋势、促进青海省农业健康发展具有重要意义。  相似文献   

2.
青海河湟谷地气候及干旱变化研究   总被引:13,自引:5,他引:8  
利用1961—2002青海河湟谷地11个气象台站气温、降水等地面观测资料,对该区气候要素的年代际变化特征及其干旱变化的成因进行了初步分析。结果表明:青海河湟谷地各季节平均气温20世纪90年比60年代偏高了0.4~0.8℃,冬季增温最显著。年平均降水量90年代比60年代偏少17.2 mm。地表蒸发量80~90年代比60~70年增多。90年代青海河湟谷地秋季和春季降水量减少,使得秋季和春季干旱发生的频次增加,导致河谷地区的径流量减少。  相似文献   

3.
河湟谷地是青藏高原东北缘典型的农牧交错区,清代以来耕地的扩张导致林草地覆盖发生明显变化。本文在现代植被图的基础上,选取土壤、地形因素,并依据历史文献数据,重建河湟谷地潜在林地草地格局,在此基础上结合清代耕地变化的重建结果,推算出清代河湟谷地林草地覆盖的变化状况。结果显示:①清代耕地扩张之前,其林、草地分布与现今各类植被类型的空间分布格局基本一致,林地分布范围比现代略大,灌木林地在空间上连续性更强,草地分布区域更广;②估算出河湟谷地潜在林地、灌木林地、草地面积分别约为0.28×104、0.93×104、2.1618×104 km2,由于耕地开垦,至清代末期,河湟谷地草地、灌木林地、林地面积分别累计减少5180.41、1330.35、441.31 km2,其中草地被垦殖占用的面积最大,程度最深,减少的区域主要集中在湟水谷地中游的乐都盆地、西宁盆地以及黄河谷地的尖扎盆地、化隆盆地等;③清代河湟谷地中人类垦殖原始覆盖类型的差异性不仅受自然环境的限制,同样受到社会政策因素的影响。  相似文献   

4.
河湟谷地兰(州)—西(宁)大城市带的发展趋势研究   总被引:2,自引:0,他引:2  
分析西北河湟谷地(兰州-西宁)城市发展和城市体系现状,以及甸西北地区资源性产业的发展与其基础设施等特点,阐述兰西地区有可能孕育一个新的大城市带的形成。  相似文献   

5.
分析西北河湟谷地(兰州—西宁)城市发展和城市体系现状,以及我国西北地区资源性产业的发展与其基础设施等特点,阐述兰西地区有可能孕育一个新的大城市带的形成。  相似文献   

6.
基于1982~2006年GIMMS NDVI数据集和地面气象台站观测数据,分析了青藏高原整个区域及各生态地理分区年均NDVI的变化趋势,并通过偏相关分析研究不同生态地理分区植被覆被变化对气温和降水响应的空间分异特征。研究表明:(1)近25年来,高原植被覆盖变化整体上趋于改善;高原东北部、东中部以及西南部湿润半湿润及部分半干旱地区植被趋于改善,植被覆盖较差的北部、西部半干旱和干旱地区呈现退化趋势;(2)高原植被变化与气温变化的相关性明显高于与降水变化的相关性,说明高原植被年际变化对温度变化更为敏感;(3)高原植被年际变化与气温和降水的相关性具有明显的区域差异,植被覆盖中等区域全年月NDVI与气温和降水的相关性最强,相关性由草甸向草原、针叶林逐步减弱,荒漠区相关性最弱。生长季植被覆盖变化与气温的相关性和全年相关性较一致,降水则不同,生长季期间高原大部分地区植被变化与降水相关性不显著。  相似文献   

7.
青藏高原东北部河湟谷地1726 年耕地格局重建   总被引:4,自引:0,他引:4  
罗静  张镱锂  刘峰贵  陈琼  周强  张海峰 《地理研究》2014,33(7):1285-1296
整理、校正了1726 年(雍正四年)河湟谷地历史文献中的田亩数据,并在GIS技术的支持下建立了该区1726 年具有空间属性(2 km×2 km)的耕地分布格局。结果显示:1726 年河湟谷地耕地总面积为1.427×103 km2,其中番地占64.7%,屯科秋站垦地占35.3%。河湟谷地虽然面积较大,但受自然环境条件的限制,可耕之地较少,该区仅有47%的网格具有耕地分布,耕地集中分布在湟水河干流区及大通河中游地区和龙羊峡以下的黄河谷地。从耕地垦殖强度分析,受自然环境条件和政治格局的双重影响,1726 年该区整体垦殖率较低,全区仅有1.4%的耕地网格垦殖率在40%以上,而68.3%的耕地网格垦殖率在10%以下,正处在广泛的开荒垦殖阶段。垦殖强度在空间分布上也存在明显差异,其中西宁县整体垦殖率水平最高,其耕地网格平均垦殖率达到了13.5%。  相似文献   

8.
青藏高原夏季上空水汽含量演变特征及其与降水的关系   总被引:1,自引:0,他引:1  
周顺武  吴萍  王传辉  韩军彩 《地理学报》2011,66(11):1466-1478
利用青藏高原(以下简称高原) 近30 年(1979-2008 年) 14 个探空站的温度和湿度观测资料以及83 个地面台站的月平均降水资料,分析了高原夏季上空水汽含量与地面降水的联系以及高原地区的降水转化率问题。结果表明:1) 高原夏季水汽含量在空间分布上表现出随海拔高度增高而减少的特征,其中东北部为最大值,东南部为次大值,而西北部为最小值。夏季降水整体上由东南向西北递减;2) EOF分解表明,高原夏季水汽含量存在两种主要的空间分布型:即全区一致变化型和南北反向变化型,其中以唐古拉山脉北侧为界呈现出的水汽含量南北反向型与降水的第一特征向量场表现出的南北反向型在空间分布上十分相似;3) 在年际变化上,高原夏季水汽含量的南北反向型与降水的南北反向型之间存在较一致的对应关系:即水汽含量出现南多北少时,高原南部降水普遍偏多而北部降水普遍偏少,反之亦然;4) 高原夏季平均降水转化率在3%~38%之间,其空间差异非常明显,高原南部降水转化率明显大于北部地区。  相似文献   

9.
乌鲁木齐市无资料地区山洪泥石流临界雨量推求   总被引:4,自引:2,他引:4  
确定暴雨山洪、泥石流临界雨量对于受影响地区防灾减灾具有十分重要的意义,本文根据暴雨山洪、泥石流的成因,计算乌鲁木齐山洪、泥石流临界雨量。有资料地区通过分析整理雨量资料来确定临界雨量:无资料地区假定灾害与降雨同频率,分析灾害次数,确定灾害发生频率,从而求出临界雨量。乌鲁木齐雨量站较少,无法绘制临界雨量的等值线。根据计算临界雨量值,利用反距离加权距离法进行研究区临界雨量空间捅值,从而得出各小流域的临界雨量值。  相似文献   

10.
青藏高原的地貌轮廓及形成机制   总被引:3,自引:1,他引:2  
一、地貌轮廓和分区论述 已故的徐近之先生把青藏高原形象地比作为一支无脚的鸵鸟:西段以帕米尔高原作头顶,兴都库什山为鸟喙,颈部是以大喀喇昆仑山为轴心的印度河上游的崇山峻岭;中部是青藏高原的主体,以南边的喜马拉雅山到北部边沿的昆仑山、阿尔金山、祁连山,山岭与盆地、高原交替出现,构成鸵鸟的躯干;东南部逐渐变为南北走向的横断山脉,仿佛是鸵鸟下垂的尾端。这个形象的比喻有深刻的地质构造差异和地貌形态作基础,我们完全可以大致按照上述的轮廓把青藏高原划分成如下三个二级地貌区,即(1)西部为高山深谷区;(2)中部为高原山脉盆地区;(3)东南部为平行岭谷山原区(图1)。这三个区的共性是,在第四纪统一的应力场控制下,都呈强烈的断块高原式隆起。但由  相似文献   

11.
青藏高原沙尘天气的遥感研究   总被引:1,自引:1,他引:0  
由于分布在青藏高原上的气象观测站点稀少,难以对沙尘天气进行充分的地面观测。通过对近年来的5次沙尘天气进行遥感识别,分析了青藏高原沙尘天气过程、影响范围和沙尘来源。结果表明,青藏高原在冬春季存在明显沙尘天气,主要分布在藏北高原、藏南谷地和青海高原地区,这与高原大风对地面的风蚀有密切关系。卫星遥感作为一种重要的观测手段,提供了对高原沙尘天气的有效观测。  相似文献   

12.
近42 年来青藏高原年内降水时空不均匀性特征分析   总被引:7,自引:1,他引:6  
根据青藏高原1967-2008 年逐日站点降水资料,定义了高原降水集中度(PCD) 和集中期(PCP)。并运用EOF、相关分析等方法分析高原PCD和PCP的时空分布特征、PCD与高原强降水的关系以及PCP前期强影响信号。结果表明:高原大部分地区PCD处于0.4~0.8 之间,PCP则处于36~41 候之间。高原PCD以全区一致型的空间分布为主;而PCP 则以南北反向型分布为主,全区一致型分布次之。整个高原PCD均呈减弱趋势,而PCP均表现为提前特征。除高原南侧个别地区,高原PCD 无论与高原强降水日数还是强降水量均呈显著正相关。同时,高原南北部PCP对应的水汽输送存在显著差异, 高原南部PCP主要受孟加拉湾季风爆发的影响。  相似文献   

13.
青藏高原降水的梯度效应及其空间分布模拟   总被引:6,自引:0,他引:6  
基于对青藏高原水汽来源的分析,结合美国SRTM提供的青藏高原DEM数据,应用G IS技术,对青藏高原降水随海拔变化的空间分布特征进行模拟分析,旨在对青藏高原降水随海拔的变化特征进行深入地认识与研究。把研究区内所属的92个气象站划分为8个降水随海拔变化类型区,分区建立实测雨量与地理因子之间的气候学统计方程,利用青藏高原的DEM数据,以0.05°×0.05°经纬网格为基本计算单元,结合海拔、坡度和坡向,推算模拟青藏高原年降水量的空间分布。模拟结果表明,东亚季风影响区大部分地区降水随海拔上升而增大,印度季风区大部分地区随海拔增高而下降,降水的海拔梯度效应由于地形和水汽来源的影响而颇为复杂。  相似文献   

14.
青藏高原受其特殊自然地理环境条件的限制,耕地主要分布在自然环境条件相对优越的河谷地区,人为因素对耕地分布范围的作用和影响极其微弱,尤其是在历史时期生产力水平较低的前提下,耕地的空间分布主要取决于土地的宜垦程度。本文将影响青藏高原河谷地区耕地分布的因子按其性质分为限制性因子和非限制性因子,并以此为基础排除了高原河谷地区不适宜耕作的地区,在适宜耕作的地区根据土地的宜垦程度,按"先优后劣"的原则将历史时期的耕地数据分配到空间上。选取青藏高原农业发展历史悠久的河谷地区之一河湟谷地作为实例,重建该区1726年耕地空间格局。将重建结果与已有的M模型重建结果进行对比分析,两者重建的耕地在空间分布上呈现出一致性,但重建结果在垦殖范围与垦殖强度上存在一定的差异;M模型的重建主要是以现代耕地分布格局为基础重建,忽略了现代耕地空间分布受现代农业技术的影响;而本文模型则是从低生产力水平前提下影响历史时期耕地分布的因子出发,重建结果更具合理性。  相似文献   

15.
青藏高原降水季节分配的空间变化特征   总被引:2,自引:2,他引:0  
朱艳欣  桑燕芳 《地理科学进展》2018,37(11):1533-1544
青藏高原是全球气候变化影响的敏感区域。在全球气候变暖的背景下,其水文气候过程发生了显著的变化,直接影响到区域水资源演化。然而,目前对该区域水文气候过程的时空演变规律仍认识不足。本文以青藏高原气象站点降水观测数据为基准,结合水汽通量资料,对13种不同源降水数据集质量进行对比分析;并选用质量较好的IGSNRR数据集识别了青藏高原降水季节分配特征的空间分布格局。结果表明,青藏高原东南、西南以及西北边缘地区降水集中度和集中期较小,夏季降水占全年降水比例不足50%;随着逐渐向高原腹地推进,降水集中度和集中期逐渐增大,雨季逐渐缩短且推迟,雨季降水占全年降水比例逐渐增大。降水季节分配的空间分布格局与水汽运移方向保持一致,即主要是由西风和印度洋季风的影响所致。基于此,识别出西风的影响区域主要位于高原35°N以北,印度洋季风的影响区域主要位于高原约30°N以南,而高原中部(30°N~35°N)降水受到西风和印度洋季风的共同影响。该结果有助于进一步理解和认识青藏高原水文气候过程空间差异性。  相似文献   

16.
羌塘高原降水空间分布及其变化特征   总被引:2,自引:1,他引:1  
羌塘高原作为典型的青藏高原内流区,其降水变化直接影响自身及其周边区域冰冻圈与生态系统的变化。但由于站点观测资料的限制,羌塘高原降水时空格局尚不明确。因此,基于2015年羌塘高原9个自动观测站逐小时降水数据和5套降水格点产品以及1978-2015年西藏地区26个国家台站逐日降水数据,分析羌塘高原降水的空间分布和变化特征。结果表明:(1)2015年羌塘高原核心区降水量和降水日数的均值分别约为154.9 mm和50天,其中,降水量约为东南边缘以及西藏地区多年均值的1/3和1/4。在空间上,降水量呈现东南多、北部少的特征,其中,昆仑山脉以北地区降水量最低,这从降水角度验证了该区域是"寒旱核心"的主要地区之一。(2)雨季与干季分明。西北部雨季分布在6-8月,比东南边缘地区约短1~2个月;且前者降水量呈现单峰型而后者呈现双峰型。(3)在高原核心区,热带降雨测量计划(TRMM)3B43数据和全球降水量测量计划(GPM)IMERG算法数据高估了多数站点的年降水量,主要是高估了干季降水量所致。(4)1978-2015年羌塘高原改则和狮泉河站降水量和降水日数呈现微弱增加趋势,且强降水事件增多。  相似文献   

17.
洪涝灾害风险评估和区划研究对区域洪灾综合管理具有重要意义。以陕西省洪涝灾害气候背景和社会经济环境为基础,利用辖区内34个气象测站1954-2015年、月降水数据和2015年社会经济统计资料,运用自然灾害风险评估理论及方法,从致灾因子危险性、孕灾环境脆弱性、承灾体暴露性和防灾减灾能力4个子系统选取17个评价指标,建立洪涝灾害风险评价指标体系,借助GIS技术进行洪涝灾害风险评估和区划。结果表明:(1)陕西省洪涝灾害致灾因子危险性等级自北向南呈递增趋势,高和次高危险区分布在陕南地区和关中盆地西部。(2)孕灾环境脆弱性空间分布差异较大,高和次高脆弱区分布在榆林北部长城沿线各县、延安市区、关中盆地渭河沿岸主要区县、陕南汉中盆地和安康市区。(3)承灾体暴露性各区县分布不均,大部分市区和农业发达地区暴露程度较高。(4)城市和经济发达地区防灾减灾能力较高,其他地区相对较低。(5)陕西省洪涝灾害综合风险等级表征为陕南汉江谷地、丹江流域和关中盆地渭河沿岸区县偏高,其他区县相对偏低。总体来看,中等以上风险区县占陕西省所辖区县的61.54%,其中陕南汉江谷地、丹江流域、关中盆地西部和渭南市应为陕西省洪涝灾害防范的重点区域。  相似文献   

18.
青藏高原近40年来的降水变化特征   总被引:21,自引:7,他引:21  
张磊  缪启龙 《干旱区地理》2007,30(2):240-246
利用我国青藏高原地区的1961-2000年56个气象站的逐月降水资料,通过计算降水量的距平百分率,分析了青藏高原自1961至2000年以来降水量变化的趋势和1961-2000年以来各季降水量变化趋势,发现:青藏高原近40年来降水量呈增加趋势,降水量的线性增长率约为1.12mm/a。再将高原划分为四个季节,分析了各季40年来的降水量的变化情况得出:春季降水量年际变化较大,秋季降水量变化不明显。夏季降水量值较大而降水变化幅度较小,冬季降水量变化则与夏季相反。通过将青藏高原分为南北两个地区,分析了两个区的年降水量和四个季节的降水量的变化得出:高原南区1961-2000年降水量呈增加的趋势,降水量的线增长率为1.97 mm/a,春季和冬季降水量年际变化较大,夏季降水量变化不明显,秋季降水量略有增加;北区年降水量和夏季的降水量变化较小,秋季降水量的年际变化较大,冬季降水量变化最大。对青藏高原的南北两区用Mann-Kendall方法进行突变分析,显示高原南区分别在1978年和1994年发生突变,北区没有发现突变。  相似文献   

19.
赵丹阳  曾永年 《中国沙漠》2016,36(4):1190-1197
以位于青海高原东部河湟谷地的海东市为研究区,在土地利用变化分析的基础上构建生态指数,利用移动窗口法获得区域空间连续的生态风险指数,再结合GIS空间分析获得与土地利用空间尺度相一致的生态风险评价结果。结果表明:1999-2009年,青海高原东部农业区土地利用变化明显,有林地、灌木林地、建设用地面积迅速增加,耕地、水浇地、草地面积持续大幅减少,土地利用变化区域占总面积的42.04%;生态高风险区面积增加显著,增长率达27.11%,主要位于未利用地和建设用地区域;生态中风险地区面积减少,主要位于旱地、水浇地、草地分布区域;生态微、低风险区域主要位于林地、灌木林地区域。  相似文献   

20.
近35 年青藏高原雨量和雨日的变化特征   总被引:13,自引:3,他引:10  
格桑  唐小萍  路红亚 《地理学报》2008,63(9):924-930
利用青藏高原1971-2005 年49 个气象台站逐日雨量和雨日资料, 分析了青藏高原年、 季雨量和雨日变化趋势。结果表明, 近35 年西藏大部分地区年雨量、雨日呈现显著增加趋 势, 而青海省大部分地区雨量、雨日却呈减少趋势。夏半年, 高原上雨日减少, 雨量增加, 说明降水越来越集中, 降水强度在增加。冬半年, 高原上雨日、雨量均在增加。高原夏半年小雨(0.1~4.9 mm) 雨日减少, 雨量增加; 小雨(5.0~9.9 mm) 和中雨的雨日和雨量均呈增加趋 势, 大雨以上的雨日和雨量均减少。冬半年, 青藏高原小雪、中雪、大雪不同量级日数和雪 日的平均雪量均呈增加趋势; 暴雪日和雪量变化均不明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号