首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The notion of Hill stability is extended from the circular restricted 3-body problem to the general three-body problem; it is even extended to systems of positive energy and the Hill's curves with their corresponding forbidden zones are generalized.Hill stable systems of negative energy present a hierarchy: they have a close binary that can be neither approached nor disrupted by the third body. This phenomenon becomes particularly clear with the distance curves presentation.The three limiting cases, restricted, planetary and lunar are analysed as well as some real stellar cases.  相似文献   

2.
Stability regions are identified in the neighborhood of periodic orbits. Features of motion in these regions are investigated. The structure of stability regions in the neighborhood of the Schubart, Moore, and Broucke orbits, the S-orbit, and the Ducati orbit is studied. The following features of motion are identified near these periodic orbits: libration, precession, symmetrization, centralization, bounce (a transition between types of trajectories), ejections, etc.  相似文献   

3.
We describe two relatively simple reductions to order 6 for the planar general three-body problem. We also show that this reduction leads to the distinction between two types of periodic solutions: absolute or relative periodic solutions. An algorithm for obtaining relative periodic solutions using heliocentric coordinates is then described. It is concluded from the periodicity conditions that relative periodic solutions must form families with a single parameter. Finally, two such families have been obtained numerically and are described in some detail.The present research was carried out partially at the University of California and partially at the Jet Propulsion Laboratory under contract NAS7-100 with NASA.  相似文献   

4.
The relations between parameters of triple approaches and the lengths of subsequent ejections are analyzed for the general three-body problem with components of equal masses and zero initial velocities. A statistically significant correlation is shown to exist between the closeness of approaches and the lengths of subsequent ejections: closer approaches generally result in longer ejections. We have found several systems that evolve to a temporary quasi-stable chain-like configuration.  相似文献   

5.
Strong three-body interactions play a decisive role in the course of the dynamical evolution of triple systems having positive as well as negative total energies. These interactions may produce qualitative changes in the relative motions of the components. In triple systems with positive or zero total energies the processes of formation, disruption or exchange of the components of binaries take place as the result of close approaches of the three single bodies or as the result of the passages of single bodies past wide or hard binaries. In the triple systems with negative energies, the strong triple interactions may result in an escape from the system as well as a formation of a hard final binary. This paper summarizes the general results of the studies of the strong three-body interactions in the triple systems with positive and negative energies. These studies were conducted at the Leningrad University Observatory by computer simulations during 1968–1989.  相似文献   

6.
7.
The non-linear stability of the triangular equilibrium point L 4 in the generalized restricted three-body problem has been examined. The problem is generalized in the sense that the infinitesimal body and one of the primaries have been taken as oblate spheroids. It is found that the triangular equilibrium point is stable in the range of linear stability except for three mass ratios.  相似文献   

8.
This paper contains a proposal of a new way of treating astrodynamical stability problems. A definition of a practical stability and a direct method of its examination are presented. The method has been applied to the triangular points problem for variety of ande values in the case of the linearized equation system as well as in the general one. The results are shown in a form which facilitates the comparison with results published by other authors.  相似文献   

9.
The article analyses the stability properties of minimum-control artificial equilibrium points in the planar circular restricted three-body problem. It is seen that when the masses of the two primaries are of different orders of magnitude, minimum-control equilibrium is obtained when the spacecraft is almost coorbiting with the second primary as long as their mutual distance is not too small. In addition, stability is found when the distance from the second primary exceeds a minimum value which is a simple function of the mass ratio of the two primaries and their separation. Lyapunov stability under non-resonant conditions is demonstrated using Arnold’s theorem. Among the most promising applications of the concept we find solar-sail-stabilized observatories coorbiting with the Earth, Mars, and Venus.  相似文献   

10.
Several families of planar planetary-type periodic orbits in the general three-body problem, in a rotating frame of reference, for the Sun-Jupiter-Saturn mass-ratio are found and their stability is studied. It is found that the configuration in which the orbit of the smaller planet is inside the orbit of the larger planet is, in general, more stable.We also develop a method to study the stability of a planar periodic motion with respect to vertical perturbations. Planetary periodic orbits with the orbits of the two planets not close to each other are found to be vertically stable. There are several periodic orbits that are stable in the plane but vertically unstable and vice versa. It is also shown that a vertical critical orbit in the plane can generate a monoparametric family of three-dimensional periodic orbits.  相似文献   

11.
We present some results about the continuation of doubly-symmetric horseshoe orbits in the general planar three-body problem. This is done by means of solving a boundary value problem with one free parameter which is the quotient of the masses of two bodies μ 3=m 3/m 1, keeping constant μ 2=m 2/m 1 (m 1 represents the mass of a big planet whereas m 2 and m 3 of minor bodies). For the numerical continuation of the horseshoe orbits we have considered m 2/m 1=3.5×10?4, and the variation of μ 3 from 3.5×10?4 to 9.7×10?5 or vice versa, depending on the orbit selected as “seed”. We discuss some issues related to the periodicity and symmetry of the orbits. We study the stability of some of them taking the limit μ 3→0. The numerical continuation was done using the software AUTO.  相似文献   

12.
Using the famous Sundman inequality, we have constructed for the first time the surfaces for the general three-body problem that we suggest calling Sundman surfaces. These surfaces are a generalization of the widely known Hill surfaces in the restricted circular three-body problem. The Sundman surfaces are constructed in a rectangular coordinate system that uses the mutual distances between the bodies as the Cartesian rectangular coordinates. The singular points of the family of these surfaces have been determined. The possible and impossible regions of motion of the bodies have been constructed in the space of mutual distances. We have shown the existence of Hill stable motions and established sufficient criteria for Hill stability of motions. Some of the astronomical applications are considered.  相似文献   

13.
A method is developed to study the stability of periodic motions of the three-body problem in a rotating frame of reference, based on the notion of surface of section. The method is linear and involves the computation of a 4×4 variational matrix by integrating numerically the differential equations for time intervals of the order of a period. Several properties of this matrix are proved and also it is shown that for a symmetric periodic motion it can be computed by integrating for half the period only.This linear stability analysis is used to study the stability of a family of periodic motions of three bodies with equal masses, in a rotating frame of reference. This family represents motion such that two bodies revolve around each other and the third body revolves around this binary system in the same direction to a distance which varies along the members of the family. It was found that a large part of the family, corresponding to the case where the distance of the third body from the binary system is larger than the dimensions of the binary system, represents stable motion. The nonlinear effects to the linear stability analysis are studied by computing the intersections of several perturbed orbits with the surface of sectiony 3=0. In some cases more than 1000 intersections are computed. These numerical results indicate that linear stability implies stability to all orders, and this is true for quite large perturbations.  相似文献   

14.
The Hamiltonian of three point masses is averaged over fast variablel and ll (mean anomalies) The problem is non-planar and it is assumed that two of the bodies form a close pair (stellar three-body problem). Only terms up to the order of (a/á)4 are taken into account in the Hamiltonian, wherea andá are the corresponding semi-major axes. Employing the method of elimination of the nodes, the problem may be reduced to one degree of freedom. Assuming in addition that the angular momentum of the close binary is much smaller than the angular momentum of the motion of the binary around a third body, we were able to solve the equation for the eccentricity changes in terms of the Jacobian elliptic functions.  相似文献   

15.
The main goal of this paper is to show that the elliptic restricted three-body problem has ejection-collision orbits when the mass parameter µ is small enough. We make use of the blow up techniques. Moreover, we describe the global flow of the elliptic problem when µ = 0 taking into account the singularities due to collision and to infinity.  相似文献   

16.
Some properties of the characteristic surface of a family of symmetric periodic orbits of the general three-body problem, corresponding to a fixed value of the ratio of the masses of two of the bodies, are studied in view of recent theoretical and numerical results. Periodic orbits of the planar circular restricted problem with period equal to an integer multiple of 2 are of special interest for the structure of a characteristic surface.  相似文献   

17.
In the general three-body problem, in a rotating frame of reference, a symmetric periodic solution with a binary collision is determined by the abscissa of one body and the energy of the system. For different values of the masses of the three bodies, the symmetric periodic collision orbits form a two-parametric family. In the case of equal masses of the two bodies and small mass of the third body, we found several symmetric periodic collision orbits similar to the corresponding orbits in the restricted three-body problem. Starting with one symmetric periodic collision orbit we obtained two families of such orbits. Also starting with one collision orbit in the Sun-Jupiter-Saturn system we obtained, for a constant value of the mass ratio of two bodies, a family of symmetric periodic collision orbits.  相似文献   

18.
It is shown that the equations of the general three-body problem take on a very symmetric form when one considers only their relative positions, rather than position vectors relative to some given coordinate system. From these equations one quickly surmises some well known classical properties of the three-body problem such as the first integrals and the equilateral triangle solutions. Some new Lagrangians with relative coordinates are also obtained. Numerical integration of the new equations of motion is about 10 percent faster than with barycentric or heliocentric coordinates.  相似文献   

19.
We present some families of horseshoe periodic orbits in the general planar three-body problem for the case of two equal masses. The considered system is a symmetric version of the one formed by Saturn, Janus and Epimetheus. We use a mass ratio equal to 35×10−5, corresponding to 105 times the Saturn-Janus mass parameter of the restricted case; for this mass ratio the satellites have a significantly bigger influence on the planet than in the classical Saturn, Janus and Epimetheus system. To obtain periodic orbits, we search those horseshoe orbits passing through two reversible configurations. A particular kind of periodic orbits where the minor bodies follow the same path is discussed.  相似文献   

20.
The equation of zero velocity surfaces for the general three-body problem can be derived from Sundman's inequality. The geometry of those surfaces was studied by Bozis in the planar case and by Marchal and Saari in the three-dimensional case. More recently, Saari, using a geometrical approach, has found an inequality stronger than Sundman's. Using Bozis' algebraic method, and a rotating frame which does not take into account entirely the rotation of the three-body system, we also find an inequality stronger than Sundman's. The comparison with Saari's inequality is more difficult. However, our result can be expressed in four-dimensional space and the regions where motion is allowed can be seen (numerically) to lie inside those obtained by the use of Sundman's inequality.Agrégé de Faculté.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号