首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We present a preliminary analysis of medium resolution optical spectra of comet C/2000 WM1 (LINEAR) obtained on 22 November 2001. Theemission lines of the molecules C2, C3, CN, NH2,H2O+ and presumably CO (Asundi and triplet bands) and C2 -were identified in these spectra. By analysing the brightnessdistributions of the C2, C3, CN emission lines along theslit of the spectrograph we determined some physical parameters of theseneutrals, such as their lifetimes and expansion velocities inthe coma. The Franck–Condon factors for the CO Asundi bands and C2 - bands were calculated using a Morse potential model.  相似文献   

2.
We present results of polarimetry and photometry of comet C/2004 Q2 (Machholz) obtained with the 0.7-m telescope of Institute of Astronomy at the Karazin Kharkiv National University on February 3 and 4, and March 4 and 14, 2005. The observations were carried out with a one-channel photoelectric photometer-polarimeter. The IHW continuum UC (λ3650/80 Å), BC (λ4845/65 Å), RC (λ6840/90 Å) and emission filters CN (λ3871/50 Å), C3 (λ4060/70 Å), and C2 (λ5140/90 Å) were used. Degree of the comet polarization at phase angles ≈ 52° and ≈44° in the red continuum was close to that for so called dusty comets. The comet had a typical spectral gradient of polarization ΔP/Δλ=0.86% per 1000 Å. In the framework of the Haser model we have found the gas production rates Q of the CN, C3 and C2 species and the dust production rates Afρ on February 4 and March 14, 2005. The ratio log[Afρ (BC)/Q(CN)] was compared with data for other comets. The normalized spectral gradient of cometary dust S’(BC,RC) was 8.7%/1000 Å for February 4 and 17.0%/1000 Å for March 14. We conclude that comet C/2004 Q2 (Machholz) in many respects is a typical dusty comet.  相似文献   

3.
The coma morphology and short-term evolution was investigated of three non-periodic comets in retrograde orbits, C/2001 Q4 (NEAT), C/2002 T7 (LINEAR), and C/2003 K4 (LINEAR). All three comets display distinct coma features, which were very different from one comet to the next and remained rather constant in shape during the observational period. A single, broad feature perpendicular to the sun-tail direction dominated the coma of C/2003 K4 in all used filters (B,V,R,I), whereas the coma of Comet C/2002 T7 exhibited different features in blue and red filters. C/2001 Q4 showed rather complex coma morphology with clear short-term variability in coma brightness. Therefore, these non-periodic comets neither show a featureless coma nor any similarities of the features detected. The overall distribution of coma material was investigated from the shape of radial coma profiles averaged around the comet nucleus. For C/2001 Q4 and C/2002 T7, the slopes fitted to the linear part of these profiles are flatter in the blue than in the red, which can be explained by the presence of coma gas. For C/2003 K4 no such difference is indicated in the May observations (r = 2.3 AU), while in July (r = 1.7 AU) the profiles in the B-filter are flatter than in V, R, and I, hence gas contamination was relevant at least in the B filter. The R and I filter images were used to determine approximate Afρ values of each comet as a function of time.  相似文献   

4.
The recent availability of bright comets has given us an excellent opportunity to study cometary chemistry. Comet Hale-Bopp (1995 O1)gave us the particularly rare opportunity to study a bright and active comet for almost two years. Our program concentrated on millimeter-wave observations of sulfur-bearing molecules in an effort to understand the total sulfur budget of the comet. Using the National Radio Astronomy Observatory 12-m telescope on Kitt Peak we monitored both the long and short-term variations in H2S, CS, and OCS, as well as observing H2CS and SO. This was the first observation of H2CS in any comet (Figure 1). Additionally, we mapped CS with the BIMA interferometer. Variations in the line profiles and changes in line intensity as large as a factor of two were seen in day to day observations of both H2S and CS. An example for H2S is shown in Figure 2. This is the first time we can attempt to study the entire group of sulfur-bearing molecules. Models of the sulfur coma have thus far largely been based on observations of the daughter products CS and atomic sulfur made over the last 18 years using the International Ultraviolet Explorer (IUE) satellite, coupled with radio observations of CS and H2S in several recent comets. Four new sulfur-bearing species have been observed in comets Hale-Bopp and Hyaku take, three of them parent species. The high resolution maps in CS will also allow spatial information to be included in the sulfur model for the first time. C/Hale-Bopp is the first comet in which so many sulfur species have been observed. Analysis of the abundances of these species in comparison to the total atomic sulfur observed should reveal whether or not we can now account for all of the primary sulfur sources in comets. Perhaps the most interesting question that these observations raised was why C/Hale-Bopp appeared to contain so much more SO and SO2 (as observed by others) than any other comet. This spurred the discovery that the UV fluorescence models of these species were incorrect (S. J. Kim, this issue). Analysis of the data and modeling of the sulfur budget are still underway. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
We present results and analysis of imaging polarimetric observations of Comet 2P/Encke. The observations were carried out at the 2-m RCC telescope of the Bulgarian National Astronomical Observatory on December 13, 1993 and on January 14, 1994, at phase angles 51.1° and 80.5°, respectively. A wide-band red filter 6940/790 Å was used. This filter is transparent for the continuum and the weak emission bands of NH2 and H2O+. There is a sunward dust fan with well-defined polarization, which peaks at≈13% in the image obtained on January 14, 1994. Along the sunward fan the degree of polarization decreases progressively. Outside of the fan the coma displays a low polarization of ≈3%. We suggest that this low polarization is caused by the NH2 emission in the pass-band of the red wide-band filter. Assuming a spherically symmetric NH2 coma we are able to correct the observed polarization for this effect. The correction leads to an increase of the observed polarization by 1 to 4% at distances 10,000 and 1500 km from the nucleus. A rough estimate shows that the polarization in the near nucleus region of Comet Encke is similar to that for the dusty comets. Even after correction the polarization of Comet Encke's dust fan is significantly less that the polarization observed in dusty comets. The reasons influencing the distribution of dust polarization in the coma are discussed. More polarimetric and colorimetric observations of the dust in Comet Encke on its return in 2003 are needed.  相似文献   

6.
Scanner observations of the coma of periodic comet Encke (P/Encke) are presented for four nights in March 1984 during its post-perihelion period. The strong emission features of CN and C2 molecules have been identified and the abundances of CN and C2 are estimated. The production rates of these molecules have also been derived from their band luminosities. No trace of sodium emission has been found in this comet.  相似文献   

7.
We present an analysis of the results of photometric investigations of two distant comets, C/2002 VQ94 (LINEAR) and 29P/Schwassmann-Wachmann-1, obtained with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. The comets under study demonstrate sufficient activity out of the zone of water ice sublimation (at heliocentric distances longer than 5 AU). In the spectra of the investigated comets, we found the CO+ and N2+ emission. The presence of this emission may say that the comets were formed in the outer parts of the Solar System, in a protoplanetary cloud at a temperature ≤25 K. We found that the photometric maximum of the ionosphere (in the CO+ filter) of the comet C/2002 VQ94 (LINEAR) is shifted relative to the photometric center of the dust coma by 1.4″ (7.44 × 103 km) in the direction deflected by 63° from the direction to the Sun. Using special filters to process the images, we picked out active structures (jets) in the dust coma of the 29P/Schwassmann-Wachmann-1 comet.  相似文献   

8.
The results of the photometric observations of comet C/2009 P1 (Garradd) performed at the 60-cm Zeiss-600 telescope of the Terskol observatory have been analyzed. During the observations, the comet was at the heliocentric and geocentric distances of 1.7 and 2.0 AU, respectively. The CCD images of the comet were obtained in the standard narrowband interference filters suggested by the International research program for comet Hale-Bopp and correspondingly designated the “Hale-Bopp (HB) set.” These filters were designed to isolate the BC (λ4450/67 Å), GC (λ5260/56 Å) and RC (λ7128/58 Å) continua and the emission bands of C2 (λ5141/118 Å), CN (λ3870/62 Å), and C3 (λ4062/62 Å). From the photometric data, the dust production rate of the comet and its color index and color excess were determined. The concentration of C2, CN, and C3 molecules and their production rates along the line of sight were estimated. The obtained results show that the physical parameters of the comet are close to the mean characteristics typical of the dynamically new comets.  相似文献   

9.
We present the analysis of the photometric and spectroscopic data obtained for comet C/2010 X1 (Elenin) when it was at a distance of 2.92 AU from the Sun. The observations were made at the prime focus of the 6-m BTA telescope with the SCORPIO focal reducer. The magnitude of the comet, measured in the R c -band with an 9?? aperture radius amounted to 16?8 ± 0?1. The computed dust production rate was estimated to be about 6 kg/s. The cometary coma manifested the emissions in the (0?C0) band of the CN molecule violet system, and a number of emission band heads of the C3 molecule. The gas production rate of the molecules is determined using the Haser model and amounts to 1.41 × 1024 and 4.20 × 1023 molecules per second for CN and C3, respectively. The ratio of gas production rates log[Q(C3)/Q(CN)] is equal to ?0.85, which is close to the mean value, determined for a significant number of comets. A normalized gradient of the cometary dust reflectivity, calculated for the 4430?C6840 ? spectral range amounts to 14.3 ± 1.2%.  相似文献   

10.
LAFFONT  CÉLINE  ROUSSELOT  P.  CLAIREMIDI  J.  MOREELS  G.  BOICE  D. C. 《Earth, Moon, and Planets》1997,78(1-3):211-217
An observation program for measuring the activity of Comet Hale-Bopp was conducted at the Observatoire de Haute Provence from August 1996 to April 1997. Narrow band images were obtained from the 120 cm telescope. A set of four filters at 513, 516, 527 and 682 nm was used to measure the C2 emission in the (1,1) and (0,0) band and the intensity of the dust-scattered continuum. The luminosity of the central part of the coma was measured in the continuum and C2 emissions, as a function of heliocentric distance before perihelion. The activity of the comet considerably increased between October 1996 and February 1997. The images obtained in August, September and October 1996 show the presence of strong jets. In February, March and April 1997, series of roughly concentric arcs were observed in the sunward hemisphere of the coma. The arcs were also detected in the spatial distribution of the I(682 nm)/I(527 nm) red color ratio and the I(513 nm)/I(516 nm) C2 emission ratio. Using the I(513 nm)/I(516 nm) ratio as a parameter to measure the degree of excitation of C2 molecules, we can show that the local production of gas, probably resulting from dust fragmentation, should be taken into account. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
C/2006 P1 McNaught is a dynamically new comet from the Oort cloud that passed very close to the Sun, driving overall volatile production rates up to about 1031 molecules s−1. Post-perihelion observations were obtained in a target-of-opportunity campaign using the CSHELL instrument at the NASA Infrared Telescope Facility atop Mauna Kea, Hawaii, on UT 2007 January 27 and 28. Eight parent volatiles (H2O, CH4, C2H2, C2H6, HCN, CO, NH3, H2CO) and two daughter fragments (OH and NH2) were detected, enabling the determination of a rotational temperature and production rate for H2O on UT January 27 and absolute and relative production rates for all the detected parent species on UT January 28. The chemical composition measured in the coma suggests that this close perihelion passage stripped off processed outer surface layers, likely exposing relatively fresh primordial material during these observations. The post-perihelion abundances we measure for CO and CH4 (relative to H2O) are slightly depleted while C2H2, NH2 and possibly NH3 are enhanced when compared to the overall comet population. Measured abundances for other detected molecular species were within the range typically observed in comets.  相似文献   

12.
《Planetary and Space Science》1999,47(6-7):745-763
An improved magnetohydrodynamic (MHD) model with chemistry is presented. The analysis of the source and sink terms for H2O + shows that for small comets up to 11% of water molecules are finally ionized. For large comets (such as Halley) this fraction decreases to less than 3%. From the MHD scaling laws a similarity law for the individual ion densities is deduced which takes into account that the mother molecules are depleted by dissociation. This is applied to H2O + ions. Radial density profiles from model calculations, observations by Giotto near comet Halley, and ground based observations of three comets confirm this scaling law for H2O + ions. From the similarity law for the density a scaling law for the column density is derived which is more convenient to apply for ground based observations. From these scaling laws methods are derived which allow the determination of the water production rate from the ground based images of the H2O + ions. Finally, the two dimensional images of model column densities are compared with observations.  相似文献   

13.
Ultraviolet absorption by H2O and other species in the comae of comets could be detected by studying, with satellite telescope-spectrometers, the occultation of hot stars by comets. Such observations could produce the first direct detection of H2O, the fundamental parent molecule in comet comae, and give measures of molecular level populations. The first instrument suitable for such observations will be the High Resolution Spectrograph on Space Telescope and, therefore, we consider its capabilities. We have used a Haser model to estimate the molecular column densities and to predict equivalent widths for lines of H2O, OH, CO, and O as functions of time and angular distance from a comet with a high H2O production rate. We have determined the minimum detectable equivalent widths, and therefore, the maximum angular separation from such a comet at which H2O, OH, and CO could be studied. A conservative, statistical estimate shows that comets with high water production rates should pass near enough to about 10 to 100 stars suitable for absorption studies of the CX band of H2O (1240 Å). Estimated equivalent widths for CO, OH, and the resonance lines of C and O indicate that these species may also be detected.  相似文献   

14.
We present results of polarimetric and photometric observations of bright comet C/1995 O1 (Hale-Bopp) obtained at the 0.7 m telescope of Kharkov University Observatory from June 18, 1996 to April 24, 1997. The IHW and HB comet filters were used. The C2 and C3 production rates for Hale-Bopp are more than one order of magnitude larger and the dust production rates are more than two orders of magnitude larger than the Halley ones at comparable distances. Hence, Hale-Bopp was one of the most dusty comets. The average UC-BC and BC-RC colours of the dust were −0.02 and 0.13 mag, respectively. The polarization of comet Hale-Bopp at small phase angles of 4.8–13.0° was in good agreement with the date for comet P1/Halley at the same phase angles in spite of the fact that the heliocentric distances of comments differed nearly twice. However, at intermediate phase angles of 34–49° the polarization of comet Hale-Bopp was significantly larger than the polarization of the other dusty comets. It is the first case of such a large difference found in the continuum polarization of comets. The wavelength dependence of polarization for Hale-Bopp was steeper than for other dusty comets. The observed degree of polarization for the anti-sunward side of the coma was permanently higher than that for the sunward shell side. The polarization phase dependence of Hale-Bopp is discussed and compared with the polarization curves for other dusty comets. The peculiar polarimetric properties of comet Hale-Bopp are most likely caused by an over-abundance of small or/and absorbing dust particles in the coma. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
A very long series of photographic observations of the comet Hale-Bopp has been made during January–April 1997 at the double astrograph (400/2000) of the Main Astronomical Observatory (Kyiv, Ukraine). Some of the cometary photos were obtained with two wide-band filter combinations. One of these combinations isolates C2 emission, another — the nearby dust continuum. The images were digitized by means of AMDPH-XY machine and then calibrated following the standard procedure. After subtraction of the dust continuum the distribution of surface brightness in the C2 emission coma of comet Hale-Bopp was studied. We found an asymmetric brightness distribution both pre- and post-perihelion. On 21.77 April 1997 a secondary brightness peak is found at the distance of 1.03 × 105 km from the nucleus. It is possible that this peak is related to the extended source of the C2 molecules. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Infrared observations of comets C/1996 B2 (Hyakutake) and C/1995 O1 (Hale-Bopp) benefited from the high spectral resolution and sensitivity of échelle spectrometers now equipping ground-based telescopes and from the availability of the Infrared Space Observatory (ISO). From the ground, several hydrocarbons were unambiguously detected for the first time: CH4, C2H2, C2H6. Water was observed through several of its hot vibrational bands, escaping telluric absorption. CO, HCN, NH3 and OCS were also observed, as well as several radicals. This permitted the evaluation of molecular production rates, of rotational temperature, and — taking advantage of the 1-D imaging of long-slit spectroscopy — of the space distribution of these species. With ISO, carbon dioxide was directly observed for the second time in a comet (after its detection from the Vega probes in P/Halley). The spectrum of water was investigated in detail (several bands of vibration and far-infrared rotational lines), permitting the evaluation of the rotational temperature of water, and of it spin temperature from the ortho-to-para ratio. Water ice was identified in the grains of Hale-Bopp as far as 7 AU from the ground and possibly at 3 AU with ISO. The composition of cometary volatiles appears to be strikingly similar to that of interstellar ices. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
We present a comparative study on molecular abundances in comets basedon millimetre/submillimetre observations made with the IRAM 30-m,JCMT, CSO and SEST telescopes. This study concerns a sample of 24comets (6 Jupiter-family, 3 Halley-family, 15 long-period) observedfrom 1986 to 2001 and 8 molecular species (HCN, HNC, CH3CN,CH3OH, H2CO, CO, CS, H2S). HCN was detected in all comets,while at least 2 molecules were detected in 19 comets. From the sub-sample of comets for which contemporary H2O productionrates are available, we infer that the HCN abundance relative to water variesfrom 0.08% to 0.25%. With respect to other species, HCN is the moleculewhich exhibits the lowest abundance variation from comet to comet. Therefore,production rates relative to that of HCN can be used for a comparative study ofmolecular abundances in the 19 comets. It is found that: CH3OH/HCN varies from ≤ 9 to 64; CO/HCN varies from ≤ 24 to 180; H2CO/HCN varies between 1.6 and 10; and H2S/HCN varies between 1.5 and 7.6. This study does not show any clear correlation between the relative abundancesand the dynamical origins of the comets, or their dust-to-gas ratios.  相似文献   

18.
We analyze observations of Comet IRAS-Araki-Alcock taken on 1983 May 10 to determine the spatial molecular abundance of C2 in the inner coma via the Δν = +1 Swan band sequence near 4690 Å; total molecular abundance for C2 is ~6 × 1027 molecules across a projected linear diameter of ~9700 km centered on the nucleus. These observations show a deficiency of C2 emission across a projected diameter of ~2000 km centered on the peak of continuum emission. Comet imagery reveals a sunward-pointing coma suggestive of an outburst of subsurface volatile ices through a nonvolatile surface crust as predicted for periodic comets. Moreover, such imagery suggests that Haser model scale lengths for C2 and its parent molecule, as derived from our observations, do not fit the data very well. Our results are discussed in terms of the then-developing instrument and observational constraints which applied at the time.  相似文献   

19.
Weaver  H. A.  Brooke  T. Y.  Chin  G.  Kim  S. J.  Bockelée-Morvan  D.  Davies  J. K. 《Earth, Moon, and Planets》1997,78(1-3):71-80
High resolution (λ/δλ ∼ 20,000) spectra of comet C/1995 O1 (Hale-Bopp) in the 2–5 μm region were obtained during UT 2–5 March 1997 using CSHELL at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea. The heliocentric and geocentric distances of the comet were ∼1.1 AU and ∼1.5 AU,respectively. We detected emission lines of the gas-phase molecules H2O, 4, C2H6, C2H2, HCN, and CO and derived absolute production rates and relative abundances for all species. We also used the 2-dimensional nature of the CSHELL data to investigate the spatial distribution of the molecules and find evidence that CO was derived at least partly from an extended source in the coma. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Hofstadter  M. D.  Hartogh  P.  McMullin  J. P.  Martin  R. N.  Jarchow  C.  Peters  W. 《Earth, Moon, and Planets》1997,78(1-3):53-61
We observed submillimeter lines of H2CO and HCN in comet Hale-Bopp near perihelion. One of our goals was to search for short term variability. Our observations are suggestive, but not conclusive, of temporal and/or spatial changes in the coma's HCN/H2CO abundance ratio of ∼25%. If due to spatial variability, the ratio on the sunward side of the coma is enhanced over other regions. If due to temporal variability, we find the bulk ratio in the coma changed in less than 16 hours. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号