首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clifford J. Cremers 《Icarus》1973,18(2):294-303
The vacuum thermal conductivity of the Apollo 12 fines is presented as a function of temperature for densities of 1300, 1640 and 1970kg/m3. It is found to vary from about 10?3W/m-°K at 100°K to about 3 x 10?3W/m-°K at 400°K. The conductivity of the fines is found to be close to that of terrestrial basalt both under vacuum and at higher pressures. The thermal diffusivity is calculated from conductivity and specific heat data. Average values of the thermal conductivity, thermal diffusivity and thermal parameter are also presented.  相似文献   

2.
The thermal conductivity of an Apollo 12 fines sample (12001,19) was measured under vacuum conditions over a temperature range of 200 K to 400 K for a density of 1640 kg/m3. It was found to vary from approximately 1.2 × 10–3 W/m – K to about 2.6 × 10–3 W/m – K respectively. A least-squares curve fitted to the data according to the relationk =A +BT 3 was found to represent the data satisfactorily.  相似文献   

3.
Apollo 12 thermal radiation properties   总被引:1,自引:0,他引:1  
The spectral and total thermal radiation properties as a function of bulk density are presented for lunar fines from the Apollo 12 mission. The total emittance is presented as a function of temperature from 90 to 400°K and the solar reflectance (albedo) for near normal incidence.This research was supported by the National Aeronautics and Space Administration under Grant NGR 18-001-060.  相似文献   

4.
James R. Gaier 《Icarus》2012,221(1):167-173
The Thermal Degradation Sample (TDS) experiment was one of the many investigations performed on the lunar surface during Apollo 14. Remarkably, the results of this 40 year old experiment were never fully interpreted, perhaps in part because the hardware vanished after its return. Mission records, high resolution photographs returned from the mission, and recent laboratory investigations have been used to glean important results from this experiment. It is most likely that the dust adhesion to the TDS was less than anticipated because of atomic-level contamination of its surfaces. These contaminants were probably removed from most equipment surfaces on the Moon by sputter cleaning by the solar wind, but the TDS experiments were not exposed to the solar wind long enough to affect the cleaning.  相似文献   

5.
6.
New data from a petrological and geochemical examination of 12 coarse basaltic fines from the Apollo 12 soil sample 12023,155 provide evidence of additional geochemical diversity at the landing site. In addition to the bulk chemical composition, major, minor, and trace element analyses of mineral phases are employed to ascertain how these samples relate to the Apollo 12 lithological basalt groups, thereby overcoming the problems of representativeness of small samples. All of the samples studied are low‐Ti basalts (0.9–5.7 wt% TiO2), and many fall into the established olivine, pigeonite, and ilmenite classification of Apollo 12 basaltic suites. There are five exceptions: sample 12023,155_1A is mineralogically and compositionally distinct from other Apollo 12 basalt types, with low pigeonite REE concentrations and low Ni (41–55 ppm) and Mn (2400–2556 ppm) concentrations in olivine. Sample 12023,155_11A is also unique, with Fe‐rich mineral compositions and low bulk Mg# (=100 × atomic Mg/[Mg+Fe]) of 21.6. Sample 12023,155_7A has different plagioclase chemistry and crystallization trends as well as a wider range of olivine Mg# (34–55) compared with other Apollo 12 basalts, and shows greater similarities to Apollo 14 high‐Al basalts. Two other samples (12023,155_4A, and _5A) are similar to the Apollo 12 feldspathic basalt 12038, providing additional evidence that feldspathic basalts represent a lava flow proximal to the Apollo 12 site rather than material introduced by impacts. We suggest that at least one parent magma, and possibly as many as four separate parent magmas, are required in addition to the previously identified olivine, pigeonite, and ilmenite basaltic suites to account for the observed chemical diversity of basalts found in this study.  相似文献   

7.
Impact breccia 14311, was collected from the Apollo 14 landing site as a potential sample of the underlying Fra Mauro Formation. Published zircon U‐Pb ages of >4000 Ma date the source material of the breccia and the apatite U‐Pb age of ~3940 Ma is interpreted as dating thermal resetting of the apatite U‐Pb systems. In this contribution we present new age information on the late stage thermal history of the breccia based on the annealing of radiation damage in the zircons. From Raman spectroscopic determination of the radiation damage within SIMS analytical spots on the zircons and the U and Th concentrations determined on these spots, we demonstrate that the radiation damage in the zircons has been annealed and we estimate the age of annealing at 3410 ± 80 Ma. This age is interpreted as a cooling age following heating of the breccia to above the annealing temperature of ~230 °C for stage 1 radiation damage in zircon, but below the temperature needed to reset the U‐Pb system of apatite (~500 °C). It is proposed that this thermal event was associated with the prolonged period of Mare volcanism, from 3150 to 3750 Ma, that generated massive basalt flows in the vicinity of the sample location.  相似文献   

8.
Data on thermophysical properties measured on lunar material returned by Apollo missions are reviewed. In particular, the effects of temperature and interstitial gaseous pressure on thermal conductivity and diffusivity have been studied. For crystalline rocks, breccias and fines, the thermal conductivity and diffusivity decrease as the interstitial gaseous pressure decreases from 1 atm to 10–4T. Below 10–4T, these properties become insensitive to the pressure. At a pressure of 10–4T or below, the thermal conductivity of fines is more temperature dependent than that of crystalline rocks and breccias. The bulk density also affects the thermal conductivity of the fines. An empirical relationship between thermal conductivity, bulk density and temperature derived from the study of terrestrial material is shown to be consistent with the data on lunar samples. Measurement of specific heat shows that, regardless of the differences in mineral composition, crystalline rocks and fines have almost identical specific heat in the temperature range between 100 and 340K. The thermal parameter calculated from thermal conductivity, density and specific heat shows that the thermal properties estimated by earth-based observations are those characteristic only of lunar fines and not of crystalline rocks and breccias. The rate of radioactive heat generation calculated from the content of K, Th and U in lunar samples indicates that the surface layer of the lunar highland is more heat-producing than the lunar maria. This may suggest fundamental differences between the two regions.Now at Lamont-Doherty Geological Observatory, Columbia University, Palisades, New York, U.S.A.  相似文献   

9.
Three soil samples at Apollo 14 Station G could potentially be used for stratigraphic correlation. Recently dissected core 14220, and core 14230 are 4 m apart and form the east leg of a triangle with an apex 7m to the west that contains trench samples 14145, 14156 and 14149, from top to bottom. Core 14220 penetrated approximately as deeply as the trench and showed a similar lithologic succession. At the base of both sections is a basalt-rich soil, overlain by a series of units that contain distinctive clasts of light soil and pebble-sized glass fragments. Fine-grained dark soil rich in vesicular glass is at the surface in both sections. The succession of similar soil types suggests that the trench correlates with 14220; but poor sample recovery makes thickness comparisons uncertain. Core 14230 appears to closely correlate with the middle of core 14220. The second layer from the top of 14220 and the top of 14230 are fine-grained with an unusually high percentage of light-matrix breccia, and the next stratum down in both cores is coarser and rich in light annealed-matrix breccia. The principal lithologic types that do not match, successionally, from core to core, are zones rich in vesicular glass and soil breccia. Such rock types are of regolith origin and probably represent patchy and discontinuous deposits.  相似文献   

10.
We report the room temperature infrared reflectance spectra of several lunar surface rocks in the form of polished slices or butt ends. The spectra were obtained over the frequency range 20-2000 cm–1 throughout the mid and far infrared (5-500µ) region of the electromagnetic spectrum where the fundamental internal and lattice vibrational modes of all minerals and rocks occur.Some fines samples were examined as pressed pellets and their reflectivities compared with the bulk samples. Several terrestrial minerals and rocks were also investigated. Kramers-Kronig analyses of these reflectance spectra were undertaken and the dispersion of the dielectric response ( and ) and the optical constants (n andk) have been determined over this frequency range. The low frequency and high frequency (infrared) dielectric constants were also calculated from the reflectance data.Raman light scattering measurements were made on all the samples supplied from the first three Apollo missions. Large background scattering proved to be the greatest experimental problem. Successful spectra in nearly all cases were obtained from small crystalline inclusions imbedded in the main ground mass. Some crystalline bulk rocks containing many very fine inclusions gave identifiable spectra and at least three different types were obtained.Supported by NASA Grant NGR 22-011-069 and by a Northeastern University Grant for Basic Research.  相似文献   

11.
12.
U‐Pb ages of zircon in four different Apollo 14 breccias (14305, 14306, 14314, and 14321) were obtained by secondary ion mass spectrometry. Some of the analyzed grains occur as cogenetic, poikilitic zircon grains in lithic clasts, revealing magmatic events at ~4286 Ma, ~4200–4220 Ma, and ~4150 Ma. The age distribution of the crystal clasts in the breccias exhibits a minor peak at ~4210 Ma, which can be attributed to a magmatic event, as recorded in zircon grains located in noritic clasts. An age peak at ~4335 Ma is present in all four breccias, as well as zircon grains from different Apollo landing sites, enhancing the confidence that these grains recorded a global zircon‐forming event. The overall age distribution among the four breccias exhibits minor differences between the breccias collected farther away from the Cone Crater and the ones collected within the continuous ejecta blanket of the Cone Crater. A granular zircon grain yielded a 207Pb/206Pb age of 3936 ± 8 Ma, which is interpreted as an impact event. A similar age of 3941 ± 5 Ma (n = 17, MSWD = 0.89, P = 0.58) was obtained for a large zircon grain (~430 × 340 μm in size). This grain might have crystallized in the same impact melt sheet which formed the granular zircon or the age is representative of the final extrusion of KREEP magma. The majority of zircon grains, however, occur as isolated crystal clasts within the matrix and their ages cannot be correlated with any real events (impact or magmatic) nor can the possibility be excluded that these ages represent partial resetting of the U‐Pb system.  相似文献   

13.
Plumes produced by the impacts of asteroids and comets consist of rock vapor and heated air. They emit visible light, ultraviolet, and infrared radiation, which can greatly affect the environment. We have carried out numerical simulations of the impacts of stony and cometary bodies with a diameter of 0.3, 1, and 3 km, which enter the atmosphere at various angles, using a hydrodynamic model supplemented by radiation transfer. We assumed that the cosmic object has no strength, and deforms, fragments, and vaporizes in the atmosphere. After the impact on the ground, the formation of craters and plumes was simulated, taking the internal friction of destroyed rocks and the trail formed in the atmosphere into account. The equation of radiative transfer, added to the equations of gas dynamics, was used in the approximation of radiative heat conduction or, if the Rosseland optical depth of a radiating volume of gas and vapor was less than unity, in the volume‐emission approximation. We used temperature and density distributions obtained in these simulations to calculate radiation fluxes on the Earth's surface by integrating the equation of radiative transfer along rays passing through a luminous region. We used tables of the equation of state of dunite and quartz (for stony impactors and a target) and air, as well as tables of absorption coefficients of air, vapor of ordinary chondrite, and vapor of cometary material. We have calculated the radiation impulse on the ground and the impact radiation efficiency (a ratio of thermal radiation energy incident on the ground to the kinetic energy of a body), which ranges from ~0.5% to ~9%, depending on the impactor size and the angle of entry into the atmosphere. Direct thermal radiation from fireballs and impact plumes, poses a great danger to people, animals, plants, and economic objects. After the impacts of asteroids at a speed of 20 km s?1 at an angle of 45°, a fire can occur at a distance of 250 km if the asteroid has a diameter of 0.3 km, and at a distance of 2000 km if the diameter is 3 km.  相似文献   

14.
During impact events, zircons develop a wide range of shock metamorphic features that depend on the pressure and temperature conditions experienced by the zircon. These conditions vary with original distance from impact center and whether the zircon grains are incorporated into ejecta or remain within the target crust. We have employed the range of shock metamorphic features preserved in >4 Ga lunar zircons separated from Apollo 14 and 15 breccias and soils in order to gain insights into the impact shock histories of these areas of the Moon. We report microstructural characteristics of 31 zircons analyzed using electron beam methods including electron backscatter pattern (EBSP) and diffraction (EBSD). The major results of this survey are as follows. (1) The abundance of curviplanar features hosting secondary impact melt inclusions suggests that most of the zircons have experienced shock pressures between 3 and 20 GPa; (2) the scarcity of recrystallization or decomposition textures and the absence of the high‐pressure polymorph, reidite, suggests that few grains have been shocked to over 40 GPa or heated above 1000 °C in ejecta settings; (3) one grain exhibits narrow, arc‐shaped bands of twinned zircon, which map out as spherical shells, and represent a novel shock microstructure. Overall, most of the Apollo 14 and 15 zircons exhibit shock features similar to those of terrestrial zircon grains originating from continental crust below large (~200 km) impact craters (e.g., Vredefort impact basin), suggesting derivation from central uplifts or uplifted rims of large basins or craters on the Moon and not high‐temperature and ‐pressure ejecta deposits.  相似文献   

15.
The valences of Ti, V, and Cr in olivine and pyroxene, important indicators of the fO2 of the source region of their host rocks, can be readily measured nondestructively by XANES (X‐ray absorption near edge structure) spectroscopy, but little such work has been done on lunar rocks, and there is some uncertainty regarding the presence of Ti3+ in lunar silicates and the redox state of the lunar mantle. This is the first study involving direct XANES measurement of valences of multivalent cations in lunar rocks. Because high alumina activity facilitates substitution of Ti cations into octahedral rather than tetrahedral sites in pyroxene and Ti3+ only enters octahedral sites, two aluminous basalts from Apollo 14, 14053 and 14072, were studied. Most pyroxene contains little or no detectable Ti3+, but in both samples relatively early, magnesian pyroxene was found that has Ti valences that are not within error of 4; in 14053, this component has an average Ti valence of 3.81 ± 0.06 (i.e., Ti3+/[Ti3+ + Ti4+ = 0.19]). This pyroxene has relatively low atomic Ti/Al ratios (<0.4) due to crystallization before plagioclase, contrary to the long‐held belief that lunar pyroxene with Ti/Al > 0.5 contains Ti3+ and pyroxene with lower ratios does not. Later pyroxene, with lower Mg/Fe and higher Ti/Al ratios, has higher proportions of Ti (all Ti4+) in tetrahedral sites. All pyroxene analyzed contains divalent Cr, ranging from 15 to 30% of the Cr present, and all but one analysis spot contains divalent V, accounting for 0 to 40% (typically 20–30%) of the V present. Three analyses of olivine in 14053 do not show any Ti3+, but Ti valences in 14072 olivine range from 4 down to 3.70 ± 0.10. In 14053 olivine, ~50% of the Cr and 60% of the V are divalent. In 14072 olivine, the divalent percentages are ~20% for Cr and 20–60% for V. These results indicate significant proportions of divalent Cr and V and limited amounts of trivalent Ti in the parental melts, especially when crystal/liquid partitioning preferences are taken into account. These features are consistent with an fO2 closer to IW ? 2 than to IW ? 1. Apollo 15 basalt 15555, analyzed for comparison with A‐14 materials, has olivine with strongly reduced Cr (Cr2+/(Cr2+ + Cr3+) ~0.9). Basalts from different sites may record redox differences between source regions.  相似文献   

16.
Two investigations of millisecond pulsar radiation are discussed: average total intensity pulse morphology and individual pulse to pulse fluctuations. The average emission profiles of millisecond pulsars are compared with those of slower pulsars in the context of polar cap models. In general the full widths of pulsar emission regions continue to widen inversely with periodP as P-(0.30-0.5) as expected for dipole polar cap models. Many pulse components are very narrow. The period scaling of pulsar profiles -separations and widths -can tell us about the angular distribution of radiating currents. An investigation of individual pulses from two millisecond pulsars at 430 MHz shows erratic pulse to pulse variations similar to that seen in slow pulsars. PSR B1937+21 displays occasional strong pulses that are located in the trailing edge of the average profile with relative flux densities in the range of 100 to 400. These are similar to the giant pulses seen in the Crab pulsar.  相似文献   

17.
The standard classical expressions for the thermal synchrotron (TS) radiation from an optically thin thermal plasma are shown to be inapplicable at photon energiesEkT since they neglect quantum effects. Quantum relationships are obtained for the TS spectral emissivity, opacity, and polarization. The quantum TS spectra are much softer atEkT than the classical ones. The TS radiation exhibits strong linear polarization in the classical domain, whereas the quantum effects reduce the polarization at highE. Expressions for the classical TS luminosity are obtained with quantum corrections which turn out to be significant for (B/B c )(kT/mc 2)10–2(B c =4.41×1013 G).Fitting the gamma-ray burst (GRB) spectra by the classical TS law (see, e.g., Lianget al., 1983) is incorrect in cases wherekT is less than the maximum detected photon energy. The continua of the GRB spectra in the rangeE20 keV-2 MeV (Mazetset al., 1981a; Andreevet al., 1983) can be fitted satisfactorily by the quantum TS spectra. The results of this fitting may suggest the existence of temperatures much higher (up to 10 MeV), and of magnetic fields much lower (down to 109 G) than those usually accepted. Under these conditions the thickness of the TS sources (103–104 cm) could be comparable with their transverse dimensions (in contrast to sources with ordinary temperatures and fields), if they lie within a few kpc. The quantum TS spectra are too soft to account for the hard components (up to tens of MeV) of the GRB spectra detected by the Solar Maximum Mission (Nolanet al., 1984), unless the temperatures are unreasonably high.A straightforward TS interpretation of the GRB spectra seems to be unrealistic. Most probably, the continuum radiation escapes from an optically thick, strongly magnetized, highly non-stationary, hot plasma near the surface of a neutron star.  相似文献   

18.
We report on radiometric and reflected light observations of 433 Eros at high time resolution, high accuracy, and broad spectral coverage. We use a thermal inertia model to estimate the thermal inertia, albedo, and size of Eros. We find an albedo of 0.125 ± 0.025 with axes of 39.3 ± 2.0 × 16.1 ± 0.8 km. Our estimate of the albedo is about 30% lower than previous estimates.  相似文献   

19.
Arecibo radar echo spectra show the Q-class asteroid 1862 Apollo to have an elongation within 10% of 1.27, a pole-on silhouette with an average dimension of about 1.7 km, and disc-integrated radar properties that are typical for radar-detected near-Earth asteroids.  相似文献   

20.
We report infrared thermal emission measurements of 1862 Apollo, which is the type example of an Earth-crossing asteroid. We derive a geometric albedo of 0.21 ± 0.02 which is within the albedo range of the S class of asteroids. The effective diameter was observed to vary with rotation from 1.2 ± 0.1 to 1.5 ± 0.1 km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号