首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal conductivity of an Apollo 12 fines sample (12001,19) was measured under vacuum conditions over a temperature range of 200 K to 400 K for a density of 1640 kg/m3. It was found to vary from approximately 1.2 × 10–3 W/m – K to about 2.6 × 10–3 W/m – K respectively. A least-squares curve fitted to the data according to the relationk =A +BT 3 was found to represent the data satisfactorily.  相似文献   

2.
Clifford J. Cremers 《Icarus》1973,18(2):294-303
The vacuum thermal conductivity of the Apollo 12 fines is presented as a function of temperature for densities of 1300, 1640 and 1970kg/m3. It is found to vary from about 10?3W/m-°K at 100°K to about 3 x 10?3W/m-°K at 400°K. The conductivity of the fines is found to be close to that of terrestrial basalt both under vacuum and at higher pressures. The thermal diffusivity is calculated from conductivity and specific heat data. Average values of the thermal conductivity, thermal diffusivity and thermal parameter are also presented.  相似文献   

3.
Preliminary depth relationships are presented for the Apollo 15, 16 and 17 drill core samples. For a given depth in any of these drill stems, thein situ lunar surface depth can be estimated. Ranges of uncertainty are also established, based on percent core recovery and degree of sample disturbance. The most likely explanation for the sample disturbance observed in the top three sections of the Apollo 16 drill stem is sample migration after the stem was capped on the lunar surface; essentially no sample was lost. Similar disturbance occurred in the Apollo 17 drill core, although to a lesser degree. The average original bulk densities (i.e., before any disturbance occurred) of the Apollo 15, 16 and 17 drill cores are 1.76, 1.59, and 1.87 g cm?3, respectively. The Apollo 15 and 17 values are probably close to thein situ values; but the Apollo 16 averagein situ density could be as much as 13% less than the already low density in the drill core.  相似文献   

4.
The small physical thickness of Saturn's rings requires that radio occultation observations be interpreted using scattering models with limited amounts of multiple scatter. A new model in which the possible order of near-forward scatter is strictly limited allows for the small physical thickness, and can be used to relate Voyager 1 observations of 3.6-and 13-cm wavelength microwave scatter from Saturn's rings to the ring particle size distribution function n(a), for particles with radius 0.001 ≤ a ≤ 20 m. This limited-scatter model yields solutions for particle size distribution functions for eight regions in Saturn's rings, which exhibit approximately inverse-cubic power-law behavior, with large-size cutoffs in particle radius ranging from about 5 m in ring C to about 10 m in parts of ring A. The power-law index is about 3.1 in ring C, about 2.8 in the Cassini division, and increases systematically with radial location in ring A from 2.7 at 2.10Rs to slightly more than 3.0 at 2.24Rs. Corresponding mass densities are 32–43 kg/m2 in ring C, 188 kg/m2 in the Cassini division, and 244–344 kg/m2 in ring A, under the assumption that the material density of the particles is 0.9 g/cm3. These values are a factor of 1 to 2 lower than first-order mass loading estimates derived from resonance phenomena. In view of the uncertainties in the measurements and in the linear density wave model, and the strong arguments for icy particles with specific gravity not greater than about 1, we interpret this discrepancy as being indicative of possible differences in the regions studied, or systematic errors in the interpretation of the scattering results, the density wave phenomena, or some combination of the above.  相似文献   

5.
Apollo video photogrammetry estimation of plume impingement effects   总被引:1,自引:0,他引:1  
Future missions to the Moon may require numerous landings at the same site. Since the top few centimeters are loosely packed regolith, plume impingement from the Lander ejects the granular material at high velocities. Much work is needed to understand the physics of plume impingement during landing to protect hardware surrounding the landing sites. While mostly qualitative in nature, the Apollo Lunar Module landing videos can provide a wealth of quantitative information using modern photogrammetry techniques. The authors have used the digitized videos to quantify plume impingement effects of the landing exhaust on the lunar surface. The dust ejection angle from the plume is estimated at 1°-3°. The lofted particle density is estimated at 108-1013 particles/m3. Additionally, evidence for ejection of large 10-15 cm sized objects and a dependence of ejection angle on thrust are presented. Further work is ongoing to continue quantitative analysis of the landing videos.  相似文献   

6.
The permeability of lunar soil simulant, JSC-1A, is measured over a range of bulk densities from 1550 to 2000 kg m−3. The corresponding viscous flow permeability is 1 × 10−12 m2 to 6.1 × 10−12 m2 for this bulk density range. Implications of these values on the contamination of regolith by rockets, on barrier/enhancement to bulk flow of ice, and on cratering are discussed. Although the particle size and shape distribution of the JSC-1A are extremely wide, the permeability measurements agree surprisingly well with the Carman-Kozeny equation. The results provide evidence that the Carman-Kozeny model could be applicable to other naturally occurring soils if effective soil properties are considered.  相似文献   

7.
The effect of the radiation pressure and Poynting-Robertson effect on the evolution of the orbits of geosynchronous satellites is studied, depending on their area to mass ratio. The qualitative changes of the orbital evolution caused by these disturbances are considered. The reflection coefficient of the satellite’s surface was assumed to be 1.44. In the vicinity of the stable point with the longitude of 75° the exit from the libration resonance mode was registered when the area to mass ratio value changed from 5.9 to 6.0 m2/kg; in the vicinity of the unstable point at 345° with the area to mass ratio of 1.4 it occurred at 1.5 m2/kg. Re-entry to Earth occurs at values of the area to mass ratio above 32.2 m2/kg, and hyperbolic exit from the low-Earth orbit occurs at values of the area to mass ratio over 5267 m2/kg. At high values of the area to mass ratio, slopes of initially equatorial orbits can reach 49°. It is shown that due to the Poynting-Robertson effect the secular decrease in the semimajor axis of orbit in libration resonance region is 3–4 orders of magnitude less than outside of it.  相似文献   

8.
We present the results of a study of meteoroid bulk densities determined from meteor head echoes observed by radar. Meteor observations were made using the Advanced Research Projects Agency Long-Range Tracking And Instrumentation Radar (ALTAIR). ALTAIR is particularly well suited to the detection of meteor head echoes, being capable of detecting upwards of 1000 meteor head echoes per hour. Data were collected for 19 beam pointings and are comprised of approximately 70 min. of VHF observations. During these observations the ALTAIR beam was directed largely at the north apex sporadic source. Densities are calculated using the classical physical theory of meteors. Meteoroid masses are determined by applying a full wave scattering theory to the observed radar cross-section. Observed meteoroids are predominantly in the 10−10 to 10−6 kg mass range. We find that the vast majority of meteoroid densities are consistent with low density, highly porous objects as would be expected from cometary sources. The median calculated bulk density was found to be 900 kg/m3. The orbital distribution of this population of meteoroids was found to be highly inclined.  相似文献   

9.
We compare the solar wind (SW) He, Ne, and Ar compositions collected during the Apollo Solar Wind Composition (SWC) experiments (1969–1972; Al‐ & Pt‐foils) and the Genesis mission (2002–2004; so‐called DOS targets considered here). While published SW 20Ne/22Ne and 36Ar/38Ar ratios of both data sets agree, differences exist in the 4He/3He, 4He/20Ne, and 20Ne/36Ar ratios. However, 20Ne/36Ar ratios from Apollo‐16 Pt‐foils, exclusively adopted as SW values by the SWC team, are consistent with the Genesis results. We investigate if the differences indicate a variability of the SW over the course of about 30 yr, or systematic biases of the two data sets, which were collected in different environments and measured several decades apart in different laboratories (University of Bern; ETH Zurich). New measurements of Apollo‐15 SWC aluminum foils in Zurich generally agree with the original measurements performed in Bern. Zurich samples show slightly lower 4He concentrations suggesting a few percent of diffusive loss of 4He during storage of the foils. A 3% difference between the He isotopic ratios measured in Bern and in Zurich possibly represents an analytical bias between the laboratories. The low SW 4He/20Ne and 20Ne/36Ar ratios in Apollo‐15 Al‐foils compared to Genesis data are consistent with a mixture of Genesis‐like SW and noble gases from small amounts of lunar dust. Our data suggest that the mean SW He, Ne, and Ar isotopic and elemental compositions have not significantly changed between the overall Apollo and Genesis mission collection periods.  相似文献   

10.
Cosmic tests of Maxwell's equations   总被引:1,自引:0,他引:1  
  相似文献   

11.
Lunar surface temperatures from apollo 12   总被引:4,自引:0,他引:4  
The diurnal variation of temperatures in the lunar surface layer is calculated using the measured properties of the Apollo 12 samples. The results are compared with similar calculations made using data from the Apollo 11 samples and with previous infrared temperature measurements. Comparisons are also made with prior calculations which used assumed properties. These are based on an effective value of the thermal parameter [ = (kqc)–1/2] of 1034 which is obtained from integrated average values of the specific heat and thermal conductivity of the Apollo 12 fines.  相似文献   

12.
Abstract– Sixty named lunar meteorite stones representing about 24 falls have been found in Oman. In an area of 10.7 × 103 km2 in southern Oman, lunar meteorite areal densities average 1 g km?2. All lunar meteorites from Oman are breccias, although two are dominated by large igneous clasts (a mare basalt and a crystalline impact‐melt breccia). Among the meteorites, the range of compositions is large: 9–32% Al2O3, 2.5–21.1% FeO, 0.3–38 μg g?1 Sm, and <1 to 22.5 ng g?1 Ir. The proportion of nonmare lunar meteorites is higher among those from Oman than those from Antarctica or Africa. Omani lunar meteorites extend the compositional range of lunar rocks as known from the Apollo collection and from lunar meteorites from other continents. Some of the feldspathic meteorites are highly magnesian (high MgO/[MgO + FeO]) compared with most similarly feldspathic Apollo rocks. Two have greater concentrations of incompatible trace elements than all but a few Apollo samples. A few have moderately high abundances of siderophile elements from impacts of iron meteorites on the Moon. All lunar meteorites from Oman are contaminated, to various degrees, with terrestrial Na, K, P, Zn, As, Se, Br, Sr, Sb, Ba, U, carbonates, or sulfates. The contamination is not so great, however, that it seriously compromises the scientific usefulness of the meteorites as samples from randomly distributed locations on the Moon.  相似文献   

13.
We discuss observations of the Moon at a wavelength of 49.3 cm made with the Owens Valley Radio Observatory Interferometer. These observations have been fit to models in order to estimate the lunar dielectric constant, the equatorial subsurface temperature, the latitude dependence of the subsurface temperature, and the subsurface temperature gradient. The models are most consistent with a dielectric constant of 2.52 ± 0.01 (formal errors), an equatorial subsurface temperature of 249?5+8K, and a change in the subsurface temperature with latitude (ψ), which is proportional to cos0.38ψ. Since the temperature of the Moon has been measured by the Apollo Lunar Heat Flow Experiment, we have been able to use our determination of the equatorial temperature to estimate the error in the flux density calibration scale at 49.3cm (608 MHz). This results in a correction factor of 1.03 ± 0.04, which must be applied to the flux density scale. This factor is much different from 1.21 ± 0.09 estimated by Muhleman et al. (1973) from the brightness temperature of Venus and apparently indicates that the observed decrease in the brightness temperature of Venus at long wavelengths is a real effect.The estimates of the temperature gradient, which are based on the measurement of limb darkening, are small and negative (temperature decreases with depth) and may be insignificantly different from zero since they are only as large as their formal errors. We estimate that a temperature gradient in excess of 0.6K/m at 10m depth would have been observed. Thus, a temperature gradient like that measured in situ at the Apollo 15 and 17 landing sites in the upper 2m of the regolith is not typical of the entire lunar frontside at the 10m depths where the 49.3 cm wavelength emission originates. This result may indicate that the mean lunar heat flow is lower than that measured at the Apollo landing sites, that the thermal conductivity is greater at 10m depth than it is at 2m depth, or that the radio opacity is greater at 10m depth than at 2m depth. The negative estimates of the temperature gradient indicate that the Moon appeared limb bright and might be explained by scattering of the emission from boulders or an interface with solid rock. The presence of solid rock at 10m depths will probably cause heat flows like those measured by Apollo to be unobservable by our interferometric method at long wavelengths, since it will cause both the thermal conductivity and radio opacity of the regolith to increase. Thus, our data may be most consistent with a change in the physical properties of the regolith to those of solid rock or a mixture of rock and soil at depths of 7 to 16m. Our results show that future radio measurements for heat flow determinations must utilize wavelengths considerably shorter than 50 cm (25 cm or less) to avoid the rock regions below the regolith.  相似文献   

14.
Contour visual observations of the Leonid meteor shower were made on December 18, 1999 by the method in which different groups of observers counted meteors in zenith, near the horizon, and observed through binoculars to study the luminosity function and the space density of the swarm. The luminosity function was obtained in the range of magnitudes from –8 m to +9 m . Over a wide range of magnitudes, the luminosity function is found to be nonlinear and is adequately approximated with a second-order curve. The logarithm of the meteor space density (m) reaches saturation at about 10 m , indicating that particles that give rise to meteors fainter than 10 m are absent in the swarm. The meteor stream reached its activity peak at a solar longitude of 235°, 287 (2 h 05 m UT). The peak visual zenithal hourly rate was about 7000 per one observer over an averaging interval of 1 min. The swarm space density increased by a factor of 6 within 0.5 hours and exceeded 600 particles per 109 km3 for meteors brighter than +4 m . In the peak night, the luminosity-function exponent demonstrates no regular trend and reflects the intercepting of certain swarm clouds by the Earth.  相似文献   

15.
Abstract– A calibrated lightcurve is presented of the near‐Earth asteroid 2008 TC3, obtained before it impacted Earth on October 7, 2008. The asteroid was observed in unfiltered images from the end of astronomical twilight until the object entered Earth’s shadow about 2 h later. The observations covered a wide range of phase angles from 14.79° to 2.93°, during which the asteroid ranged from 82,000 km to 29,000 km distance from the observer. A method is presented for obtaining photometrically filtered brightness values for the asteroid using unfiltered imaging techniques. Over 1,700 images of the asteroid produce a lightcurve with a peak‐to‐peak variation in V of 0.76 magnitude. Analysis of the lightcurve yields values for H = 30.86 ± 0.01 and G = 0.33 ± 0.03. Combined with other constraints on the kinetic energy and diameter of the asteroid, which suggest a low 1.8 g cm?3 density and albedo 0.05 ± 0.01, the value of H implies an asteroid of about 4.1 m in diameter, 28 m3 in volume, and 51,000 kg in mass. The determined value of G is out of range for normal, larger asteroids of albedo 0.05–0.15.  相似文献   

16.
A new sample of M51-type galaxies consisting of 46 systems is used to estimate the B-band luminosity function. The luminosity function for the primary components of the systems can be described by a Schechter function with the parameters * = (1.4±0.3)×10-5 Mpc-3, = -1.3+0.4 -0.3, and M * = -20.3+0.2 -0.1. The values of the latter two parameters are comparable to those for isolated galactic pairs. The resulting estimate of the average density of M51-type galaxies is (4±3)% of the average density of isolated pairs for luminosities in the range -22m.0<M<-16m.0  相似文献   

17.
A highly sensitive device has been developed for the detection of micrometeoroids with masses extending down to and below the expected classical solar radiation pressure limit. This limit occurs at a mass of about 10−16 kg for a particle density of 3 × 103 kg m−3. The detector operates on the principle that charge (Q) is released when a hypervelocity microparticle impacts on a solid surface. This process has previously been investigated at particle velocities (ν) greater than 1 km sec−1 and the empirical relationship Q = Kmανβ obtained where m is the particle mass and K, α and β are constants. In the present study the validity of this relationship has been demonstrated for iron particles with masses from 10−16 to 10−13 kg in the velocity range 0.05–1.4 km sec−1 impacting on a molybdenum target. A value of α ≈ 1 is indicated and a value of β of 3.2 ± 0.4 has been obtained.  相似文献   

18.
Abstract— Thirteen glasses from Apollo 17 regolith 71501,262 have been chemically analyzed by electron microprobe and isotopically dated with the 40Ar/39Ar dating method. We report here the first isotopic age obtained for the Apollo 17 very low titanium (VLT) volcanic glasses, 3630 ± 40 Ma. Twelve impact glasses that span a wide compositional range have been found to record ages ranging from 102 ± 20 Ma to 3740 ± 50 Ma. The compositions of these impact glasses show that some have been produced by impact events within the Apollo 17 region, whereas others appear to be exotic to the landing site. As the data sets that include compositions and ages of lunar impact glasses increase, the impact history in the Earth‐Moon system will become better constrained.  相似文献   

19.
J. G. Doyle 《Solar physics》1983,89(1):115-131
A wavelength list is presented for the solar flare of 7 September, 1973 in the spectral range 1335 Å–380 Å. The ions observed suggest a range of temperatures in the flare plasma from 8 × 103 K to 107 K. This wavelength range contains many of the important electron density diagnostics lines for the solar transition zone and corona. The line list should also be of potential use in the identification and comparison with stellar spectra.  相似文献   

20.
Abstract– We present initial results from hydrocode modeling of impacts on Al‐1100 foils, undertaken to aid the interstellar preliminary examination (ISPE) phase for the NASA Stardust mission interstellar dust collector tray. We used Ansys’ AUTODYN to model impacts of micrometer‐scale, and smaller projectiles onto Stardust foil (100 μm thick Al‐1100) at velocities up to 300 km s?1. It is thought that impacts onto the interstellar dust collector foils may have been made by a combination of interstellar dust particles (ISP), interplanetary dust particles (IDP) on comet, and asteroid derived orbits, β micrometeoroids, nanometer dust in the solar wind, and spacecraft derived secondary ejecta. The characteristic velocity of the potential impactors thus ranges from <<1 to a few km s?1 (secondary ejecta), approximately 4–25 km s?1 for ISP and IDP, up to hundreds of km s?1 for the nanoscale dust reported by Meyer‐Vernet et al. (2009) . There are currently no extensive experimental calibrations for the higher velocity conditions, and the main focus of this work was therefore to use hydrocode models to investigate the morphometry of impact craters, as a means to determine an approximate impactor speed, and thus origin. The model was validated against existing experimental data for impact speeds up to approximately 30 km s?1 for particles ranging in density from 2.4 kg m?3 (glass) to 7.8 kg m?3 (iron). Interpolation equations are given to predict the crater depth and diameter for a solid impactor with any diameter between 100 nm and 4 μm and density between 2.4 and 7.8 kg m?3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号