共查询到20条相似文献,搜索用时 0 毫秒
1.
基于主成分分析和BP神经网络的法国梧桐叶绿素含量高光谱反演研究 总被引:6,自引:0,他引:6
利用ASD便携式野外光谱仪和SPAD-502叶绿素计实测了落叶阔叶树法国梧桐叶片的高光谱反射率与叶片绿度,并对原始光谱反射率及一阶导数光谱与叶片绿度进行了相关分析;综合分析了10个常见光谱植被指数与法国梧桐叶绿素含量的相关性与预测性;最后利用主成分分析对光谱数据进行降维,将得到的主成分得分作为BP人工神经网络模型的输入变量进行了法国梧桐叶绿素含量的估算。结果表明:法国梧桐的叶片反射光谱数据与叶绿素含量的相关性在可见光区域显著,导数光谱数据在绿黄光区和红光区的部分波段与叶绿素含量的相关系数大于对应波段光谱反射率与叶绿素含量的相关关系。在所列举的10个常用植被指数中归一化植被指数与叶绿素含量的关系最密切,相关系数达到了0.7957。主成分分析的BP神经网络模型可以容纳更多的波段信息进行叶绿素含量的估算,预测值与实测值之间的线性回归的确定性系数R2为0.9883,是一种良好的植被叶绿素含量高光谱反演模式。 相似文献
2.
3.
针对BP神经网络预测下沉系数时易陷入局部极小以及下沉系数影响因素间存在一定相关性的问题,该文提出了一种基于主成分分析(PCA)和模拟退火—粒子群优化算法(SAPSO)优化BP神经网络的下沉系数预测模型。该模型首先采用PCA对下沉系数影响因素进行降维,消除其所包含的冗余信息;然后利用SAPSO优化BP神经网络的权值与阈值;最后使用训练样本训练模型,利用训练后的模型预测5组测试样本的下沉系数,并对比分析SAPSO-BP、PSO-BP和BP神经网络模型的预测结果。实验结果表明:基于PCA-SAPSO-BP神经网络的下沉系数预测模型的预测值与实际值最为吻合,其平均绝对误差、平均绝对百分比误差及均方根误差相比SAPSO-BP、PSO-BP和BP神经网络模型显著降低,可以有效提高下沉系数预测的准确性。 相似文献
4.
5.
6.
7.
为了分析对流层延迟的时空变化规律、提高对流层延迟的改正精度,利用BP神经网络处理非线性问题的优势,改进传统的霍普菲尔德模型得到一种新的融合模型(Hop+BP模型)。分别对比Hop+BP模型与传统的霍普菲尔德模型、多元线性回归模型、BP神经网络等模型的计算结果,得到如下结论:霍普菲尔德模型存在一个明显的系统误差,精度较低;多元线性回归的预测精度有所提高,但是其本质是将数据强制拟合,缺少物理解释,难以推广使用;传统的BP神经网络的计算精度较之霍普菲尔德模型有80%的提高,但存在明显的不稳定性;Hop+BP模型具有预测精度高、稳定性好等优点,预测中误差为1.1cm,明显优于传统方法。 相似文献
8.
基于主成分分析的植被含水率模型 总被引:1,自引:0,他引:1
为了对岷江上游“生态水”的估测提供有效的数据源和方法,利用高光谱遥感技术定量研究了植被反射光谱与植被含水率的关系,测定了研究区多个采样点棕榈叶片的反射光谱和对应的含水率,通过二者的相关分析和逐步回归的方法提取敏感波段;为避免敏感波段之间相关性影响,采用主成分分析法提取主成分,建立主成分与含水率的定量分析模型,并建立主成分与标准自变量的回归方程,然后建立各个标准变量与原始自变量(反射光谱敏感波段)的回归方程,最终转换为植被含水率与反射光谱之间的模型.结果表明:棕榈叶片反射光谱在454 nm,668 nm,1 466 nm,1 664 nm和1 924 nm波段处与含水率显著相关;采用主成分定量分析模型的估算值与实测值相关系数为0.92,均方根误差为0.06. 相似文献
9.
10.
河川径流等水文时间序列属于复杂的非线性系统,使用回归分析等传统的分析方法,难以获取和描述其内在关联和变化规律.利用现有的相关站点的径流量历史数据和输沙量、降水量数据,在进行规格化处理和主成分分析的基础上,利用三层BP人工神经网络模型,对澜沧江流域上游昌都站径流量与各关联因子之间复杂的非线性映射关系进行模拟,采用拟牛顿算法对模型进行训练,模拟结果达到期望精度要求,并利用1982年~1985年实测数据进行模型验证.结果证明利用BP神经网络模型对澜沧江流域站点的月径流量序列进行模拟、预测和数据补缺处理具有可行性. 相似文献
11.
nRSEI (nonlinear remote sensing ecological index)是新近提出的遥感生态指数,它采用核主成分分析(kernel principal component analysis, kPCA)来集成模型的各个分指标。其主要根据是认为原RSEI采用的湿度、绿度、干度、热度这4个指标在北京研究区的相关关系总体为弱相关,因此需要采用专门处理非线性关系的kPCA来集成这4个指标。为此探讨了北京地区这4个指标的相关关系类型,并对新指数验证方法的有效性进行了深入分析。结果表明,北京地区这4个指标总体呈显著的强线性相关关系,因此并不适合采用kPCA集成;新指数的精度验证方法也存在明显的缺陷,不能证明新指数的有效性。同时还就遥感建模的可行性、模型的普适性、指标尺度的一致性,以及模型精度的验证方法、标准参考影像的选取和验证所需的样本量等遥感研究论文中常见的基础问题进行了讨论。 相似文献
12.
基坑施工是各类大型地面及地下建筑的重要基础和前提,而随着基坑规模的不断扩大以及施工环境的日益复杂,对基坑各参数的监测和预测显得越来越重要。本文针对基坑变形预测的高精度要求,详细阐述了基坑变形的数据采集要求和预测机理,建立基于粒子群优化算法的改进BP神经网络预测模型,该模型与原始BP神经网络预测模型相比,在收敛速度和目标误差控制方面都实现了明显提升。同时,经过施工现场的实验检验,PSO-BP神经网络预测在预测精度方面,其相对误差和平均绝对百分比误差也明显降低,说明该优化模型有效提升了运算速度、预测精度,能够为安全施工提供有效支持,具备推广应用的价值。 相似文献
13.
快速近似主成分分析算法 总被引:2,自引:0,他引:2
通过分析现有主成分分析算法的不足,研究了如何利用小波包算法实现快速近似主成分分析算法的问题,并对两种算法的复杂度进行了比较。实验结果表明:提出的快速近似主成分分析算法在精度和速度两个方面都具有明显的优势。 相似文献
14.
针对主成分分析(PCA)变换影像融合过程中变量降维信息损失较多的问题,提出了一种基于高通滤波的主成分分析(PCA)变换融合方法。该方法首先对高分辨率影像在高通滤波模块上进行卷积运算,然后将滤波过后的影像与主成分变换后的第一主分量进行直方图匹配和加权平均运算;最后用直方图匹配过的高分辨率影像代替第一主分量与其他分量经K-L逆变换得到融合结果。选取北京二号卫星影像进行试验,通过将PCA变换和HPF融合结果进行对比评价,结果表明了该方法很好地提高了影像的空间细节信息与光谱保持能力,实验结果将为后续高分系列卫星影像处理提供支持。 相似文献
15.
滑坡敏感性评价是地质灾害预测预报的关键环节。针对BP神经网络易陷入局部最小值、收敛速度慢等问题,该文以三峡库区秭归县境内为研究区,采用粒子群优化(PSO)算法对BP神经网络的初始权值和阈值进行优化,构建PSO-BP神经网络滑坡敏感性预测模型,实现研究区滑坡敏感性评价。采用受试者工作特征曲线分析模型预测精度,得到PSO-BP神经网络预测精度为0.931,预测结果与实际滑坡总体空间分布具有良好的一致性,且预测能力优于BP神经网络。实验结果表明,PSO-BP神经网络耦合模型在实现滑坡敏感性评价上具有理想的预测精度和良好的适用性。 相似文献
16.
袁显贵 《测绘与空间地理信息》2014,(3):62-64,80
沿海的产业梯度的转移,带来了赣江流域产业的迅速崛起,同时水资源问题也日显突出。水资源承载力评价是实现水资源可持续发展的重要手段,本文以主成分分析法为基础,在赣江流域内按上、中、下流域段分别选取赣州市、吉安市和南昌市3个主要城市作为水资源承载力评价对象,得出赣江流域上中游的水资源承载力明显高于下游,上中游的水资源开发潜力还很大,而下游的水资源利用应在可持续发展的原则下采取保护措施。 相似文献
17.
基于误差平方和最小准则构建回归分析模型和时间序列模型的组合模型,采用BP(black propagation)神经网络优化其组合模型的预测结果,最终获得信息最大化的预测结果.将此方法应用于南京地铁某号线自动化监测,结果显示其预测精度高于任何单一模型,预测精度得到有效提升. 相似文献
18.
基于BP神经网络模型的太湖悬浮物浓度遥感定量提取研究 总被引:6,自引:1,他引:6
构建了含有一个隐含层的两层BP神经网络反演模型,以TM数据的前4个波段的反射率作为输入,以悬浮物浓度值作为输出,成功反演了太湖水体的悬浮物浓度。 相似文献
19.
近年来,国内外学者在神经网络方面做了大量研究,使神经网络技术在计算、分析、仿真、控制等方面得到广泛应用,在变形监测和测绘数据处理领域,学者们做了大量实验和实践研究,得到丰富的研究和应用成果。本文首先对大坝变形影响因子进行分析,采用主成分分析法提取影响大坝变形的因子元素,最大程度降低因子之间的相关性对神经网络模型的影响。采用改进BP神经网和径向基函数神经网络两种方法,分析大坝变形预测预报效果,并结合相关文献研究成果,对比两种算法的优缺点,探讨神经网络应用于大坝变形监测的可行性。最后结合工程实际应用实例,研究计算表明,改进BP神经网络和径向基函数神经网络都能对实测数据有较好的拟合效果,达到大坝变形预测预报精度,在大坝安全预测预报分析中具有一定的参考和实用价值。 相似文献