首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
利用MODIS数据识别水稻关键生长发育期   总被引:11,自引:1,他引:11  
孙华生  黄敬峰  彭代亮 《遥感学报》2009,13(6):1130-1146
利用遥感方法提取中国范围内的水稻关键生长发育期。首先, 对时间序列Terra MODIS-EVI(Enhanced Vegetation Index)进行傅里叶和小波低通滤波平滑处理, 然后, 根据水稻在移栽期、分蘖初期、抽穗期和成熟期的EVI变化特征, 实现对各个生长发育期的识别。通过将利用2005年MODIS数据识别的结果与当年气象台站的地面观测资料进行比较, 采用本研究中的识别方法得出的水稻各个生长发育期的绝对误差大部分小于16d, 经过F检验表明提取的结果与地面观测资料在0.05水平下具有显著一致性。研究中的信息提取方法可被用于其他年份的水稻生长发育期识别, 根据其他作物的生长发育特点, 也可能适合于提取其他作物的生长发育期。  相似文献   

2.
成像高光谱数据在赤潮检测和识别中的应用研究   总被引:11,自引:1,他引:11  
近年来,频繁发生的海洋赤潮灾害给我国沿海经济带来了巨大损失.在对海洋赤潮的监视监测中,航空遥感是重要的监测平台,推帚式成像光谱仪(PHI)是获取高分辨率高光谱图像的重要手段.2001年7月至8月,中国海监飞机对辽东湾海域频繁发生的大面积赤潮进行了航空遥感监测,首次获取了海上高光谱数据.本文以获取的高光谱数据为研究对象,通过合成假彩色图像、提取异常区域的反射率曲线以及构造相关分析函数等方法,初步探讨了利用高光谱数据进行赤潮水体检测和赤潮种类识别的方法.  相似文献   

3.
天宫一号高光谱数据尚未得到普遍应用,其数据的质量和应用潜力仍在进一步实践求证和挖掘.See5.0数据挖掘工具是一种能够找出训练样本中模式类隐含特征,并可以自动建立决策规则的分类算法,可避免人为建立分类规则的主观性.本文首先通过光谱曲线分析,选择地物光谱分离性最好的波段组合,然后利用See5.0工具生成规则集,再利用规则集对同一幅天宫一号高光谱数据在不同分类级别上进行分类,并利用相同的验证样本进行精度验证.经过光谱分析发现分类不同森林类型的最佳谱段中心波长分别为:655 nm、673 nm、802 nm、866 nm、984 nm,See5.0分类结果表明在同一树种不同生长期及不同亚种的分类级别上,分类精度在45%以下,表现出了一定局限性,但在树种分类级别上,天宫一号数据表现出了高光谱的优越性,分类精度皆在80%以上,植被类型分类级别,分类精度可达到90%以上.  相似文献   

4.
油菜关键物候期信息的获取对于油菜的田间管理、观赏时间预测及产量估测等具有重要意义,是精准农业实施的重要组成部分。极化合成孔径雷达技术不仅可以实现对作物全天时监测,而且对作物的结构信息敏感,在物候期提取中极具潜力。首先,以覆盖油菜整个生长期的5景时间序列全极化Radarsat-2数据为基础,基于Stokes矢量提取了平均强度g0、归一化平均强度g0m、平均极化度ρm、零度方向路线球面度Pdor、零度孔径路线倾斜度Idap和零度孔径路线弧对称度Aadap6个典型Stokes参数;然后,对比分析了这6个参数对油菜整个生长期动态变化的响应特征,并以此为基础采用决策树(decision tree,DT)算法对油菜的物候期进行了识别。研究结果表明,6个Stokes参数中,除ρm和Aadap外,其他4个参数均对油菜物候期变化敏感,在油菜物候期识别中具有极大的潜力。DT算法能有效识别油菜的各关键物候期,其分类结果与样地实测数据具...  相似文献   

5.
城市植被是低碳治理的重要因素之一,其固碳能力直接影响着城市碳排放。针对现有技术耗时费力、对环境造成一定的影响,本文提出了基于高光谱数据的城市植被碳储量估算研究,以绍兴市上虞区百官街道、曹娥街道、崧厦街道的中心城区为研究区域,将城市植被分为乔木、灌木、竹林和草地4种类型。利用提出的固碳指数对植被固碳能力进行定性分析,再通过生物量经验公式对碳储量进行定量计算,将两者结合得到高光谱植被碳储量估算模型,为大尺度碳储量快速估算提供一种新思路。结果表明:4种城市植被分类精度达88.10%,固碳能力排序为竹林>乔木>灌木>草地。  相似文献   

6.
分析常规三角网生长算法的优缺点,提出点角概念,在生成Delaunay三角形的过程中,逐步缩小离散点的搜索范围,克服常规算法时间效率低的缺点。构网过程中,完全遵守Delaunay三角网的剖分准则,验证算法的稳定性和高效性。  相似文献   

7.
高光谱遥感影像的波段光谱特征是各类地物内在物理化学性质的反映,在对不同地物进行分类与识别时具有巨大潜能,但由于其波段多造成的信息冗余,需要对高光谱数据进行有效降维,以提高高光谱影像的分类准确度。本文提出了基于判别局部片排列的流形学习算法(DLA)对Hypersion高光谱数据进行降维,通过对局部样本数据进行流形学习框架内的优化训练,将原始光谱特征空间转换为低维的最优判别流形子空间,然后在该子空间内利用最大似然分类器对Hypersion影像中的每个像素进行分类,并与主成分分析(PCA)、原始光谱特征(spectral)降维方法的分类效果进行比较。结果表明,DLA能够有效提高高光谱数据的分类准确度,对不同树种分类取得了满意效果。  相似文献   

8.
本文利用主成分分析法分别对乔木树种高光谱反射率原始数据及3种预处理数据进行降维运算,再使用SVM-RBF、SVM-Linear、BP、Fisher 4种分类算法,对降维后的数据进行分类测试,发现累积方差贡献率与分类精度没有必然联系,而主成分的个数对分类结果的影响较为明显;不同的数据预处理方法和不同的分类方法对主成分分析算法降维后数据的分类灵敏度不同。  相似文献   

9.
利用光谱反射率估算叶片生化组分和籽粒品质指标研究   总被引:5,自引:0,他引:5  
对可见光至短波红外波段(350—2500nm)冬小麦田间冠层光谱反射率与叶片含氮量间的关系进行了相关分析。结果表明,820—1100nm波段的光谱反射率与叶片含氮量极显著正相关;1150—1300hm波段的光谱反射率与叶片含氮量显著正相关,以上两波段为叶片全氮的敏感波段。对各生育时期叶片全氮与其他生化组分的关系进行了回归分析,并建立了相关的回归方程,显著性检验结果表明,方程具有较高的可靠性。小麦的叶片含氮量可以估算其它生化组分及干物质指标含量,开花期叶片含氮量可用来估测籽粒蛋白质和干面筋等品质指标含量。  相似文献   

10.
海底勘测对海洋资源开发利用保护、海洋工程建设和国防安全等具有重要意义,浅地层剖面仪是一种能够勘测海底浅表层底质分布的声学设备,目前剖面仪的底质识别精度取决于操作者的主观性,可靠性较差,为提高效率和解译精度,需进一步研究底质层界自动识别模型。本文提出了适用于海底底质层界识别且不需要人工干预的区域生长改进算法,即在灰度映射和噪声剔除研究的基础上,研究根据迭代最大类间差算法提取图像层界骨架信息,将骨架信息作为初始生长点位,以流变特性修正生长指向,结合灰度加权映射曲线和峰谷波长约束生长邻域,通过本文算法分割层界,提取边缘、连接成线,从而实现海底底质层界识别。连云港港航道浅剖实测数据试验证明,本文算法能够有效识别底质层界,且识别精度达到厘米级,满足海底底质解译分析要求。  相似文献   

11.
为实现黑土有机质含量更准确的估测,提出了基于小波变换和连续投影算法的高光谱估测方法.以典型黑土区采集的土壤样品为研究对象、分析光谱设备(analytical spectral devices,ASD)光谱仪获取的可见光—近红外区间光谱数据和经化学分析得到的土壤有机质含量为数据源,首先采用小波变换提取1~7层小波低频系数...  相似文献   

12.
王立国  王丽凤 《遥感学报》2021,25(11):2234-2244
玉米作为中国重要粮食作物,品种众多,易出现错分现象,影响农业安全和粮食生产。针对传统基于卷积神经网络CNN(Convolutional Neural Network)的高光谱图像作物品种识别模型所需建模样本数量巨大的问题,提出基于高光谱像素级信息和CNN的玉米种子品种识别模型。首先,获取不同品种玉米种子在400—1000 nm范围内的高光谱图像,提取样本全部像素的203维光谱信息,利用主成分分析PCA(Principal Component Analysis)算法将光谱维度降至8维。在实验中,样本的像素级光谱信息(即:样本的全部像素的光谱信息)除应用于CNN模型外,也应用于支持向量机(SVM)和K近邻分类(KNN)模型中,结果表明:在相同模型中,基于像素级光谱信息比基于米粒级光谱信息(即:每粒样本所有像素光谱信息的平均值)识别效果好;在相同情况下,CNN模型比SVM和KNN模型的识别效果好;基于像素级光谱信息和CNN的品种识别模型识别效果最稳定,依据像素级分类结果采用多数投票策略对玉米种子样本进行识别,样本识别精度高达100%(注:100%为建模集样本与测试集样本数量为0.27和0.32时的识别精度,随着测试集样本数量的增加,该识别精度将有所降低)。最后,使用t分布随机邻域嵌入(t-SNE)算法实现CNN输出特征值的可视化,验证了基于高光谱像素级信息和CNN的品种识别模型的有效性。在建模样本极少的情况下,实现了玉米种子品种的无损、高效识别,为精准农业提供了理论基础。  相似文献   

13.
传统的基于Prim算法的高光谱图像波段分组排序需要计算所有波段之间的相关系数,并采用满秩相关系数矩阵作为邻接矩阵进行比较,计算复杂度较高。结合模糊数学的相似度衡量理论和高光谱图像的特点,首先提出使用计算简单的最大最小贴近度(maximum and minimum closeness,MMC)作为衡量高光谱图像波段间相关性的参数;然后将MMC的满秩邻接矩阵稀疏化,提取有效波段进行排序,明显降低了排序的波段数目和比较次数。实验结果表明,与传统的Prim算法相比,所提出的算法在保持原有压缩效率的同时,大大降低了波段排序的复杂度,平均波段排序运行时间减少了27%。  相似文献   

14.
红树林是世界上生产力最高、价值最高的湿地生态系统之一。冠层叶绿素含量CCC(Canopy Chlorophyll Content)作为红树林重要的生物物理参量,是估算其生产力和评价其健康状况的重要指标。本文利用珠海一号高光谱卫星(OHS)影像与Sentinel-2A多光谱数据计算传统植被指数与组合植被指数并构建了高维数据集,综合利用正态分布检验、最大相关系数法与变量重要性评价进行数据降维和变量优选;分别基于单一线性回归算法、机器学习回归算法和堆栈集成学习回归算法构建了红树林CCC遥感反演模型,探明北部湾红树林CCC的最佳遥感反演模型,验证OHS高光谱影像与Sentinel-2A数据反演红树林CCC的精度差异,评估SNAP-SL2P算法反演红树林CCC的适用性。研究结果表明:(1)通过数据降维和变量选择处理,从高维度OHS数据集选取了8个特征变量,其中RSI(12,17)、DSI(12,18)和NDSI(6,12)组合植被指数对红树林CCC反演精度的贡献率较高;(2)联合OHS数据和最优堆栈GBRT集成学习回归模型(Score=0.999,RMSE=0.963 μg/cm2)的训练精度优于最优RF机器学习回归模型(RMSE降低了7.531 μg/cm2),明显优于最优Lasso线性回归模型(RMSE降低了19.383 μg/cm2);(3)在最优堆栈集成学习回归模型下,OHS数据反演红树林CCC的精度(R2=0.761,RMSE=16.738 μg/cm2)高于Sentinel-2A影像(R2=0.615,RMSE=20.701 μg/cm2);(4)联合OHS和Sentinel-2A数据的最优堆栈集成学习回归模型反演红树林CCC的精度都明显优于SNAP-SL2P算法(R2=0.356,RMSE=49.419 μg/cm2)。研究结果论证了正态分布检验、最大相关系数法和基于XGBoost的特征选择方法有效降低了高维数据集的维度,并得到了最优特征变量;OHS数据的最优堆栈GBRT集成学习回归模型训练精度最高,是估算红树林CCC的最优反演模型;OHS和Sentinel-2A数据都能有效反演红树林CCC(R2均大于0.61),而OHS数据的估算精度更高(R2大于0.75);SNAP-SL2P算法不能有效反演红树林CCC(R2小于0.4),且对红树林CCC数值存在系统性低估。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号