首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Degradation of coastal ecosystems in the Great Barrier Reef (GBR), Australia, has been linked with a decline in water quality from land-based runoff. This paper examines the reduction in current end-of-catchment loads required for total suspended solids (TSS) and dissolved inorganic nitrogen (DIN) to achieve GBR water quality guidelines. Based on first-order estimates of sustainable pollutant loads, current TSS and DIN loads would need to be reduced by approximately 7000ktons/y (41%) and 6000tons/y (38%), respectively. Next, these estimated reductions for TSS and DIN are compared with Reef Plan targets for anthropogenic sediment (-20% by 2020) and nitrogen (-50% by 2013) loads. If successful, these targets will accomplish approximately 40% of TSS and 92% of DIN load reductions required to achieve sustainable loads to the GBR lagoon. These first-order estimates elucidate the need to establish ecologically relevant targets for river pollutant loads to the GBR for management and policy.  相似文献   

2.
Every year the Ganges and Brahmaputra rivers in Bangladesh transport 316 and 721 million tonnes of sediment, respectively. These high loads of suspended sediment reflect the very high rate of denudation in their drainage basins. The average mechanical denudation rate for the Ganges and Brahmaputra basins together is 365 mm 103 yr−1. However, the rate is higher in the Brahmaputra Basin than that in the Ganges Basin. Several factors, including mean trunk channel gradient, relief ratio, runoff, basin lithology and recurring earthquakes are responsible for these high denudation rates. Of the total suspended sediment load (i.e. 1037 million tonnes) transported by these rivers, only 525 million tonnes (c. 51% of the total load) are delivered to the coastal area of Bangladesh and the remaining 512 million tonnes are deposited within the lower basin, offsetting the subsidence. Of the deposited load, about 289 million tonnes (about 28% of the total load) are deposited on the floodplains of these rivers. The remaining 223 million tonnes (about 21% of the total load) are deposited within the river channels, resulting in aggradation of the channel bed at an average rate of about 3·9 cm yr−1. Although the Brahmaputra transports a higher sediment load than the Ganges, the channel bed aggradation rate is much higher for the Ganges. This study also documents a wide range of interannual, seasonal and daily variation in suspended sediment transport and water discharge. Interannual variation in sediment deposition within the basin is also suggested. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents a multi-criteria based tool for assessing the relative impact of diffuse-source pollution to the Great Barrier Reef (GBR) from the river basins draining into the GBR lagoon. The assessment integrates biophysical and ecological data of water quality and pollutant concentrations with socio-economic information pertaining to non-point source pollution and (potential) pollutant impact. The tool generates scores for each river basin against four criteria, thus profiling the basins and enabling prioritization of management alternatives between and within basins. The results support policy development for pollution control through community participation, scientific data integration and expert knowledge contributed by people from across the catchment. The results specifically provided support for the Reef Water Quality Protection Plan, released in October 2003. The aim of the plan is to provide a framework for reducing discharge of sediment, nutrient and other diffuse-source loads and (potential) impact of that discharge and for prioritising management actions both between and within river basins.  相似文献   

4.
High Arctic river responses to changing hydroclimatic and landscape processes are poorly understood. In non‐glacierized basins, snowmelt and rainfall generate river discharge, which provides first order control over fluxes. Further factors include the seasonality of precipitation, seasonal active layer development, and permafrost disturbance. These controls were evaluated in terms of sedimentary and biogeochemical fluxes from paired catchments at Cape Bounty, Melville Island, Nunavut during 2006–2009. Results indicate that the source of runoff can be more important than the amount of runoff for sediment, solutes, and organic yields. Although the snowmelt period is typically the most important time for these yields, heavy late summer precipitation events can create disproportionately large yields. Rainfall increases yields because it hydrologically connects areas otherwise isolated. Inorganic solute yields from late summer rainfall are higher because the thick active layer maximizes hydrologic interactions with mineral soils and generates high solute concentrations. Results also indicate that while the catchments are broadly similar, subtle topographic differences result in important inter‐catchment differences in runoff and suspended and dissolved loads. The East watershed, which had less extensive permafrost disturbance, consistently had higher concentrations of dissolved solids. These higher dissolved fluxes cannot therefore be explained by thermokarst features, but rather by deeper active layer development, due to a greater proportion of south‐facing slopes. Although warm temperatures in 2007 led to extensive active layer disturbance in the West watershed, because the disturbances were largely hydrologically disconnected, the total disturbed area was small, and inter‐annual variability in discharge was high, there was no detectable response in dissolved loads to disturbances. Sediment availability increased after 2007, but yields have largely returned to pre‐disturbance levels. Results indicate that seasonality and frequency‐magnitude characteristics of projected increases in precipitation must be considered along with active layer changes to predict the fluvial sedimentary and biogeochemical response to regional climate change. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
We used historical flood plume extent data (modelled) to quantify the typical spatial extent of the summer runoff-seawater mixing zone of the Great Barrier Reef (GBR) lagoon. Spatially explicit analysis of the variability of in situ chlorophyll a concentrations (observed) across the runoff-seawater mixing zone, then allowed us to explore regional differences in the nutrient enrichment impact of runoff events from the various river systems that drain the GBR catchment. We demonstrate the existence of a discernable north-south gradient along the length of the GBR, such that for equivalent runoff:seawater dilutions ratios, lower levels of nutrient enrichment (as indicated by chlorophyll alpha observations) result from the river systems that drain the relatively undisturbed northern areas of the GBR catchment, compared to more human-impacted central and south areas. We identify a strong correlation between this north-south enrichment gradient and the flood concentration of dissolved inorganic nitrogen (DIN) entrained by the various river systems. By substituting the nutrient enrichment characteristics of the human-impacted river discharges with those of the undisturbed northern rivers, we provide a means to compare the short-term enriching 'footprint' for existing runoff intrusions with those that are likely to have occurred under pre-European catchment conditions. We demonstrate that under pre-European conditions, the nutrient enriching impact from river runoff was likely to have been largely constrained within 1-2 km of the coast, whereas existing conditions support the impact of reefs some 20-30 km off the coast. By using the developed spatial relations, we show that for the heavily human-impacted river systems, reductions in the end-of-river concentrations of DIN in the order 50-80% are needed in order to restore parity with pre-European conditions. We discuss these results in regard to developing end-of-catchment water quality targets for the region.  相似文献   

6.
The Great Barrier Reef (GBR) catchment area has been monitored simultaneously for sediment and nutrient exports from 10 priority catchments discharging into the GBR lagoon between 2006 and 2009. This allows GBR catchment-wide exports to be estimated and spatially compared within a discrete time-frame. Elevated levels of sediment and nutrient exports were recorded in all monitored catchments as compared to pre-European estimates, but vary around previous estimates of mean annual loads. During the period of monitoring, the Burdekin and Fitzroy catchments contributed the highest sediment and nutrient exports, however when loads were normalised for area, these catchments produced the lowest unit yields. In contrast, the highest yields were produced in the wetter and proportionately more intensively cultivated Johnstone, O'Connell, and Pioneer catchments particularly for dissolved nitrogens. This assessment offers the necessary scientific foundation for future monitoring, assessment, and management of sediment and nutrient loads entering the GBR.  相似文献   

7.
This study examined the temporal variability in herbicide delivery to the Great Barrier Reef (GBR) lagoon (Australia) from one of the GBR catchment's major sugarcane growing regions. Annual loads of measured herbicides were consistently in the order of 200+kg. Atrazine, it's degradate desethylatrazine, and diuron contributed approximately 90% of annual herbicide load, with early 'first-flush' events accounting for the majority of herbicide loads leaving the catchment. Assessment of herbicide water-sediment partitioning in flood runoff highlighted the majority of herbicides were transported in predominantly dissolved form, although a considerable fraction of diuron was transported in particulate-bound form (ca. 33%). Diuron was also the herbicide demonstrating the highest concentrations and frequency of detection in sediments collected from catchment waterways and adjacent estuarine-marine environments, an outcome aligning with previous research. Herbicide physico-chemical properties appear to play a crucial role in partitioning between water column and sediment habitat types in GBR receiving ecosystems.  相似文献   

8.
Much of the sediment and nutrient load to the Great Barrier Reef (GBR) lagoon happens during over bank floods, when discharge can be significantly underestimated by standard river gauges. This paper assesses the potential need for a flood load correction for 28 coastal rivers that discharge into the GBR lagoon. For each river, daily discharge was divided into flows above and below a 'flood' threshold to calculate the mean annual percentage flow above this threshold. Most GBR rivers potentially need a flood load correction as over 15% of their mean annual flow occurs above the minor flood level; only seven rivers need little/no correction as their flood flows were less than 5% of the mean annual flow. Improved assessment of the true load of materials to the GBR lagoon would be an important contribution to the monitoring and reporting of progress towards Reef Plan and associated marine load targets.  相似文献   

9.
Numerical hydrodynamic models of the northeastern Queensland shelf, forced by regional winds and modelled boundary currents in the northern Coral Sea, are used to provide improved estimates of general flow trajectories and water residence times within the Great Barrier Reef (GBR) shelf system. Model performance was checked against a limited set of current metre records obtained at Lark Reef (16°S) and the Ribbon Reefs (15.5°S). Estimates of water parcel trajectories are derived from a series of numerical tracer experiments, with daily releases of neutrally buoyant, un-reactive particles at 320 sites along the coast between Cape York (10.7°S) and Hervey Bay (25°S). Flow trajectories and residence times for tracer particles introduced to the GBR lagoon in the southern—ca. 22°S, central—19°S, and northern reef—14°S are emphasised. For purposes of the analysis, the year was divided into two seasons based on mean alongshore current direction. Most coastal sourced tracers entering the central GBR lagoon between 16° and 20°S during the northward-current season (January–August) primarily encounter the outer-shelf reef matrix after exiting the lagoon at its northern “head” (nominally 16°S), after 50–150 days. Up to 70% of tracer particles entering in the southward-current season (August–December) eventually crossed the lagoon to the outer-shelf reef matrix, with median crossing times between 20 and 330 days. During favourable wind conditions, tracers introduced at the coast may move rapidly across the lagoon into the reef matrix. The tracer experiments indicate that most coastal-sourced tracers entering the GBR lagoon remain near the coast for extended periods of time, moving north and south in a coastal band. Residence times for conservative tracer particles (and implied residence times for water-borne materials) within the GBR shelf system ranged from ca. 1 month to 1 year—time frames that are very long relative to development times of planktonic larvae and cycling times for nutrient materials in the water column, implying they are transformed long before reaching the outer reef matrix.  相似文献   

10.
The output of material from 11 small drainage basins in the Keuper region of central Luxembourg is considered. Attention is given to differences between forested and cultivated basins. Whilst the output of suspended solids from the cultivated Mosergriecht catchment may be as much as five times higher than from the forested Keiwelsbaach, the solute load is only 50 per cent and the runoff 20 per cent higher. Relationships between dispersed clay in suspension and the water chemistry observed for the forested drainage basins are not present in the cultivated catchments. Water having a milky appearance and containing dispersed clay is of more frequent occurrence in forested basins where subsurface runoff occurs in macropores and cracks in the undisturbed soil.  相似文献   

11.
Nutrient and suspended sediment concentrations were measured in the dry season and during the rising and falling stages of flood events in the Annan and Daintree rivers to estimate catchment exports. These flood events were also sampled along the salinity gradient in the estuary and nearshore shelf to quantify the modification of terrestrial sediment and nutrient loads as they pass through estuaries into the Great Barrier Reef lagoon. In the Daintree River TSS concentrations were found to increase between the catchment and the estuary plume. The source of TSS may have been scour of the estuarine channel or from land use in the catchment of the lower estuary. In the dry season nitrogen enters the Annan and Daintree estuaries predominantly in the form of PON and DON in roughly equal proportions. Nitrogen exports to the GBR are mostly in the form of DON. In the wet season the majority of nitrogen enters the estuaries as DON and leaves as PON. Nitrogen removal in the estuaries and plumes appears to be biologically mediated once suspended sediment concentrations decrease to a point where phytoplankton growth is not light limited. In the dry season phosphorus enters and leaves the estuaries primarily in organic form. PIP is the dominant form of phosphorus in river water, but leaves the estuary more evenly distributed between all forms. These estuarine processes result in less nitrogen and phosphorus being delivered to the GBR lagoon than is exported from the catchment. The differences between these estuaries highlights the need for further work to explore modifications in estuaries that drain into the Great Barrier Reef lagoon.  相似文献   

12.
The hydroclimatic conditions of water runoff formation and the hydrography of Parana and Uruguay river basins in the South America are considered. A survey of the recent studies of the hydrological regime of these rivers is given. Observation data are used to evaluate the long-term average values of water runoff and suspended sediment yield in the Parana and Uruguay and their variations along the rivers. Characteristics of many-year runoff variations in the rivers were evaluated. A climate-induced increase was identified in the Parana and Uruguay water runoff, and the corresponding present-day trends in river runoff variations in both rivers were evaluated. The total water runoff and suspended sediment yield of the Parana and Uruguay into La Plata estuary were calculated. Water balance of the drainage basin of La Plata estuary was characterized.  相似文献   

13.
Rona Vink  Horst Behrendt 《水文研究》2002,16(16):3227-3244
Pollutant transport and management in the Rhine and Elbe basins is still of international concern, since certain target levels set by the international committees for protection of both rivers have not been reached. The analysis of the chain of emissions of point and diffuse sources to river loads will provide policy makers with a tool for effective management of river basins. The analysis of large river basins such as the Elbe and Rhine requires information on the spatial and temporal characteristics of both emissions and physical information of the entire river basin. In this paper, an analysis has been made of heavy metal emissions from various point and diffuse sources in the Rhine and Elbe drainage areas. Different point and diffuse pathways are considered in the model, such as inputs from industry, wastewater treatment plants, urban areas, erosion, groundwater, atmospheric deposition, tile drainage, and runoff. In most cases the measured heavy metal loads at monitoring stations are lower than the sum of the heavy metal emissions. This behaviour in large river systems can largely be explained by retention processes (e.g. sedimentation) and is dependent on the specific runoff of a catchment. Independent of the method used to estimate emissions, the source apportionment analysis of observed loads was used to determine the share of point and diffuse sources in the heavy metal load at a monitoring station by establishing a discharge dependency. The results from both the emission analysis and the source apportionment analysis of observed loads were compared and gave similar results. Between 51% (for Hg) and 74% (for Pb) of the total transport in the Elbe basin is supplied by inputs from diffuse sources. In the Rhine basin diffuse source inputs dominate the total transport and deliver more than 70% of the total transport. The diffuse hydrological pathways with the highest share are erosion and urban areas. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
The role of suspended particulate matter (SPM) as an important carrier of mercury (Hg) dispersed into the Gulf of Trieste and in the adjacent Grado lagoon (Northern Adriatic Sea) was studied during a high Isonzo River inflow and the resulting river plume formation. Despite the fact that extreme flood events are rare during the year, they account for most of the PHg influx (37-112 ngL(-1)) into the Gulf of Trieste. When the river plume is diverted to the SW under the influence of an E-NE wind, the tidal flux acts as a "transport belt" carrying the PHg, mostly inorganic, into the Grado lagoon. A preliminary estimation indicates that the amount of PHg entrapped in the lagoon basin following a tidal semi-cycle accounts for 1.4 kg/12h, which corresponds to about 49% of the total Hg carried by the tidal flow. These findings should be considered in future remediation strategies in the lagoon environment.  相似文献   

15.
Phosphorus (P) export from the Foron River watershed was intensively monitored. Water was analysed for total P, soluble total P, soluble orthophosphate and suspended solids. Watershed soils and river sediments were sampled and the size fraction <0·2 mm analysed for total P, water extractable P, bioavailable P, 1 minute exchangeable P and P fixation capacity. Interstitial waters were analysed for soluble total P. Four hydrological conditions recurred, two during low river flows and two during increased flow. The first occurs in dry weather with a constant or decreasing flow over at least seven days and when there is no surface runoff. Exported phosphorus, predominately soluble and bioavailable, is from point sources. Phosphorus inputs exceed P export so P accumulates in the river. The second condition occurs when a small storm flow increases the average seven-day flow to exceed the preceding weekly average. Phosphorus export exceeds P inputs and originates from urban runoff, point sources and release of P stored in the river. Exported P is largely particulate but highly bioavailable. The third condition is when substantial runoff follows at least a seven-day period of constant or decreasing flow. Phosphorus export is from diffuse urban runoff. All the P stored is exported. Exported P is highly bioavailable. High concentrations and fluxes of P export are often seen. The fourth condition happens when the soils are wet and increased flow is from both urban and agricultural runoff. Phosphorus export from diffuse agricultural runoff predominates and is largely not bioavailable. Phosphorus concentrations are low but export fluxes are high when flows are high. These hydrological conditions, when integrated with concepts of mass balance define a phosphorus export typology comprising four regimes. These regimes explain total phosphorus (TP) storage, transport and export patterns, changes in P speciation and allow identification of probable sources of TP in the Foron river watershed. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
Techniques to predict temporal variations in concentrations and loads of suspended solids from highway runoff are required to estimate impacts on receiving water ecology and to inform the design of interception/treatment devices. A recent UK study included the collection of rainfall, highway runoff rates and sediment load and quality data from six different sites where motorway runoff drained directly into a receiving watercourse. This data set is used to critically evaluate a previously-published model (Kim et al. 2005) aimed at predicting temporal variations in runoff quality. The comparisons, based on discrete samples collected during 21 storm events, suggest that a simplification of the model, requiring just two parameters, provides a robust estimate of temporal variations in total suspended solids (TSS). Generic parameter values are provided, and the model’s application is illustrated. The model captures first flush effects well, but the identified generic parameters fail to fullypredict the variation in absolute TSS values that are observed in practice.  相似文献   

17.
Streamflow simulations for 23 major river basins from the third-generation general circulation model (GCM) of the Canadian Centre for Climate Modelling and Analysis are assessed. Precipitation and runoff data are used from the AMIP II simulation in which the GCM is integrated for a 17-yr period with specific sea surface temperatures and sea-ice concentrations. Compared to the observations, the components of the global hydrological cycle and, the globally averaged precipitation and runoff over land, are well simulated. There remain, however, discrepancies in the simulation of regional precipitation and consequently runoff amounts, which lead to differences in basin-wide averaged quantities. Mean annual model precipitation is within 20% of the observed estimates for 13 out of 23 river basins considered. Model mean annual runoff is within 20% of the observed estimates for only 4 out of these 13 river basins. Analysis of basin-wide averaged monthly precipitation and streamflow data, and the errors associated with the mean, and amplitude and phase of the annual cycles, indicate that model streamflow simulations improve with improvement in GCM precipitation.  相似文献   

18.
Accurate estimates of N and P loads were obtained for four contrasting UK river basins over a complete annual cycle. The fractionation of these loads into dissolved and particulate, and inorganic and organic components allowed a detailed examination of the nutrient load composition and of the factors influencing both the relative and absolute magnitude of these components. The particulate phosphorus (TPP) loads account for 26–75% of the annual total phosphorus (TP) transport and are predominantly inorganic. The inorganic (PIP) and organic (POP) fractions of the TPP loads represent 20–47% and 6–28% of the annual TP transport, respectively. In contrast, the particulate nitrogen loads (TPN) represent 8% or less of the annual total nitrogen (TN) loads and are predominately organic. For dissolved P transport, the dissolved inorganic fraction (DIP) is more important, representing 15–70% of the TP loads, whereas the dissolved organic fraction (DOP) represents only 3–9% of the TP loads. The TN loads are dominated by the dissolved component and more particularly the total oxidized fraction (TON), which is composed of nitrate and nitrite and represents 76–82% of the annual TN transport. The remaining dissolved N species, ammonium (NH4-N) and organic N (DON) account for 0·3–1·2% and 13–16% of the annual TN transport, respectively. The TPN and TPP fluxes closely reflect the suspended sediment dynamics of the study basins, which are in turn controlled by basin size and morphology. The dissolved inorganic nutrient fluxes are influenced by point source inputs to the study basins, especially for P, although the TON flux is primarily influenced by diffuse source contributions and the hydrological connectivity between the river and its catchment area. The dissolved organic fractions are closely related to the dissolved organic carbon (DOC) dynamics, which are in turn influenced by land use and basin size. The magnitude of the NH4-N fraction was dependent on the proximity of the monitoring station to point source discharges, because of rapid nitrification within the water column. However, during storm events, desorption from suspended sediment may be temporarily important. Both the magnitude and relative contribution of the different nutrient fractions exhibit significant seasonal variability in response to the hydrological regime, sediment mobilization, the degree of dilution of point source inputs and biological processes. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
Changes in runoff and sediment loads to the Pacific Ocean from 10 major Chinese rivers are presented in this paper To quantitatively assess trends in runoff and sediment loads, a parameter called the "Trend Ratio T" has been defined in this paper. To summarize total runoff and sediment load from these rivers, data from 17 gauging stations for the duration 1955 to 2010 has been standardized, and the missing data have been interpolated by different approaches according to specific conditions. Over the observed 56-year study period, there is a quite stable change in total runoff. Results show that the mean annual runoff flux entering the Pacific Ocean from these rivers is approximately 1,425 billion cubic meters. It is found that all northern rivers within semi-arid and transitional zones including the Songhua, Liaohe, Haihe, Yellow and Huaihe rivers present declining trends in water discharge. Annual runoff in all southern rivers within humid zones including the Yangtze, Qiantang, Minjiang, Pearl and Lancang rivers does not change much, except for the Qiantang River whose annual runoff slightly increases. The annual sediment loads of all rivers show significant declining trends; the exceptions are the Songhua and Lancang rivers whose annual sediment loads have increasing trends. However, the mean annual sediment flux carried into the Pacific Ocean decreased from 2,026 million tonnes to 499 million tonnes over the 56-year period. During this time there were 4 distinct decreasing phases. The decrease in annual sediment flux is due to the integrated effects of human activity and climate change. The reduction in sediment flux makes it easy for reservoir operation; however, the decrease in sediment flux also creates problems, such as channel erosion, river bank collapse and the retreat of the delta area.  相似文献   

20.
Hydrological processes at the river basin influence the quality of downstream water bodies by controlling the loads of nutrients and suspended solids. Although their monitoring is important for social, economic and environmental reasons, in‐situ measurements are too expensive and thus too sparse to describe their relations. The aim of this study is to investigate the temporal relations of soil erosion in the upstream part of river basins with water quality characteristics in the downstream coastal zone, using satellite remote sensing and GIS modelling. Data from satellite missions of MODIS, SRTM and TRMM were used to describe the soil erosion factors of the Universal Soil Loss Equation in three river basins, and MERIS satellite data was used to estimate chlorophyll‐a and total suspended matter concentrations in the coastal zone of northwest Aegean Sea in Greece, where the rivers discharge. The resulting time series showed an average correlation of upstream rainfall with downstream water quality, which increased when soil erosion was introduced. Higher correlations were observed with the use of a time lag, revealing a variable delay between the three test sites. Lower correlation coefficients were observed for chlorophyll‐a, due to the sensitivity of algae to environmental conditions. The use of free of charge satellite data and easy to operate GIS models renders the findings of this work useful for coastal zone management bodies, in order to help increase aquaculture productivity, predict algal blooms and predict siltation of ports. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号