首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The Feos Formation of the Nijar Basin comprises sediments deposited during the final stage of the Messinian salinity crisis when the Mediterranean was almost totally isolated. Levels of soft‐sediment deformation structures occur in both conglomeratic alluvial sediments deposited close to faults and the hyposaline Lago Mare facies, a laminated and thin‐bedded succession of whitish chalky marls and intercalated sands alternating with non‐marine coastal plain deposits. Deformation structures in the coarse clastics include funnel‐shaped depressions filled with conglomerate, liquefaction dykes terminating downwards in gravel pockets, soft‐sediment mixing bodies, chaotic intervals and flame structures. Evidence for soft‐sediment deformation in the fine‐grained Lago Mare facies comprises syndepositional faulting and fault‐grading, sandstone dykes, mixed layers, slumping and sliding of sandstone beds, convolute bedding, and pillar and flame structures. The soft‐sediment deformed intervals resemble those ascribed elsewhere to seismic shaking. Moreover, the study area provides the appropriate conditions for the preservation of deformation structures induced by seismicity; such as location in a tectonically active area, variable sediment input to produce heterolithic deposits and an absence of bioturbation. The vertical distribution of soft‐sediment deformation implies frequent seismic shocks, underlining the importance of seismicity in the Betic region during the Late Messinian when the Nijar Basin became separated from the Sorbas Basin to the north. The presence of liquefied gravel injections in the marginal facies indicates strong earthquakes (M ≥ 7). The identification of at least four separate fissured levels within a single Lago Mare interval suggests a recurrence interval for large magnitude earthquakes of the order of millennia, assuming that the cyclicity of the alternating Lago Mare and continental intervals was precession‐controlled. This suggestion is consistent with the present‐day seismic activity in SE Spain.  相似文献   

2.
The development of soft‐sediment deformation structures in clastic sediments is now reasonably well‐understood but their development in various deltaic subenvironments is not. A sedimentological analysis of a Pleistocene (ca 13·1 to 15 10Be ka) Gilbert‐type glaciolacustine delta with gravity‐induced slides and slumps in the Mosty‐Danowo tunnel valley (north‐western Poland) provides more insight, because the various soft‐sediment deformation structures in these deposits were considered in the context of their specific deltaic subenvironment. The sediments show three main groups of soft‐sediment deformation structures in layers between undeformed sediments. The first group consists of deformed cross‐bedding (inclined, overturned, recumbent, complex and sheath folds), large‐scale folds (recumbent and sheath folds) and pillows forming plastic deformations. The second group comprises pillar structures (isolated and stress), clastic dykes with sand volcanoes and clastic megadykes as examples of water‐escape structures. The third group consists of faults (normal and reverse) and extensional fissures (small fissures and neptunian dykes). Some of the deformations developed shortly after deposition of the deformed sediment, other structures developed later. This development must be ascribed to hydroplastic movement in a quasi‐solid state, and due to fluidization and liquefaction of the rapidly deposited, water‐saturated deltaic sediments. The various types of deformations were triggered by: (i) a high sedimentation rate; (ii) erosion (by wave action or meltwater currents); and (iii) ice‐sheet loading and seasonal changes in the ablation rate. Analysis of these triggers, in combination with the deformational mechanisms, have resulted – on the basis of the spatial distribution of the various types of soft‐sediment deformation structures in the delta under study – in a model for the development of soft‐sediment deformation structures in the topsets, foresets and bottomsets of deltas. This analysis not only increases the understanding of the deformation processes in both modern and ancient deltaic settings but also helps to distinguish between the various subenvironments in ancient deltaic deposits.  相似文献   

3.
Intervals of soft-sediment deformation structures are well-exposed in Jurassic lacustrine deposits in the western Qaidamu basin. Through field observation, many soft-sediment deformation structures can be identified, such as convoluted bedding, liquefied sand veins, load and flame structures, slump structures and sliding-overlapping structures. Based on their genesis, soft-sediment deformation structures can be classified as three types: seismic induced structures, vertical loading structures, and horizontal shear structures. Based on their geometry and genesis analysis, they are seismic-induced structures. According to the characteristics of convoluted bedding structures and liquefied sand veins, it can be inferred that there were earthquakes greater than magnitude 6 in the study area during the middle Jurassic. Furthermore, the study of the slump structures and sliding-overlapping structures indicates that there was a southeastern slope during the middle Jurassic. Since the distance from the study area to the Altyn Mountain and the Altyn fault is no more than 10km, it can be also inferred that the Altyn Mountain existed then and that the Altyn strike-slip fault was active during the middle Jurassic.  相似文献   

4.
崔明明  彭楠  柳永清  王宗秀  旷红伟  许克民  李春麟 《地质论评》2022,68(4):2022082002-2022082002
陆相湖盆中沉积物滑塌常造成复杂的同沉积变形,对确定古地震事件、古地形等有重要作用,系统研究滑塌变形体系有助于厘清变形成因、理解变形机理和深化区域构造背景认识。本文梳理国内外滑塌变形研究进展,总结沉积物顺坡滑塌的形成条件、滑塌变形特征,尤其是滑塌褶皱的形态演化、伴生构造、对古斜坡的指示、有关滑塌变形的物理模拟等,并结合野外变形成因的识别,探讨滑塌成因与后期构造成因变形的有效鉴别标志。综合分析认为,陆相湖盆滑塌变形与重力流沉积密不可分,单一滑塌体的褶皱形态从滑塌体后缘到前缘由圆柱状褶皱、紧闭等厚直立褶皱转变为蘑菇状褶皱,演化过程可划分为多个阶段。在滑塌褶皱中存在逆冲断层、碎屑脉体、不规则侵蚀面、软布丁构造等,引起滑塌变形的机制可分为应力作用机制和液化作用机制。物理模拟因其可改变材料物理参数的优势,可能成为未来滑塌变形的重要研究方向。指出在鉴别滑塌成因变形和后期构造成因变形研究中仍然存在较多争议,其中未固结沉积物的活化、再改造、生物扰动、液化现象的存在是确定软沉积物变形的关键,变形构造在大尺度、层系规模上具有相同的应力场并与区域构造背景相符合是后期构造成因变形的最有力证据。  相似文献   

5.
Burdur city is located on lacustrine sedimentary deposits at the northeastern end of the Fethiye–Burdur Fault Zone (FBFZ) in SW Turkey. Fault steps were formed in response to vertical displacement along normal fault zones in these deposits. Soft sediment deformation structures were identified at five sites in lacustrine sediments located on both sides of the FBFZ. The deformed sediments are composed of unconsolidated alternations of sands, silts and clay layers and show different morphological types. The soft sediment deformation structures include load structures, flame structures, slumps, dykes, neptunian dykes, drops and pseudonodules, intercalated layers, ball and pillow structures, minor faults and water escape structures of varying geometry and dimension. These structures are a direct response to fluid escape during liquefaction and fluidization mechanism. The driving forces inferred include gravitational instabilities and hydraulic processes. Geological, tectonic, mineralogical investigations and age analysis were carried out to identify the cause for these soft sediment deformations. OSL dating indicated an age ranging from 15161±744 to 17434±896 years for the soft sediment deformation structures. Geological investigations of the soft sediment deformation structures and tectonic history of the basin indicate that the main factor for deformation is past seismic activity.  相似文献   

6.
杨剑萍  聂玲玲  杨君 《沉积学报》2008,26(6):967-974
在区域构造背景研究和岩心观察的基础上,在柴达木盆地西南缘新近纪地层中识别出与地震沉积有关的软沉积物变形构造。软沉积物变形构造包括液化砂岩脉、泄水构造、重荷模、火焰构造、震积砂枕、砂球构造、枕状层、层内错断、地裂缝、串珠状构造、震褶层、混合层及地震角砾状构造等。液化砂岩脉有喉道状、脉络状、飘带状、尖突状及“V”字形五种,主要是由振动流体化作用、振动液化挤压作用和振动拉张裂缝充填作用形成的;重荷模、火焰构造、枕状构造、球状构造是受地震颤动在砂、泥岩界面上由于砂层下沉、泥层上穿形成的;地裂缝、层内错断、震褶层是地震颤动直接引起的断裂、错断和褶皱;枕状层是地震振动引起的砂层脱水、下沉、变形形成的;混合层构造的完整性取决于地震强度和地震持续时间;地震角砾状构造是由地震振动使原始沉积层断裂形成的自碎屑角砾、脆性角砾和塑性角砾组成。该成果从沉积学角度证明了新近纪是昆仑山造山带北侧断裂活动较强烈时期,也为柴达木盆地新生代构造演化研究提供了依据。地震作用极大地提高了储层的渗透率,改善了油气储层的储集物性。  相似文献   

7.
Recent studies on Neoproterozoic climate change have prompted renewed interest in Neoproterozoic glacial deposits and renewed debate over the criteria used to identify the nature of glacial influence on sedimentation. Analyses of soft sediment deformation structures have provided important clues to distinguish between competing palaeoenvironmental interpretations of Quaternary glacial deposits; a similar approach is presented here in the analysis of Neoproterozoic glacial deposits of the Smalfjord Formation, northern Norway. A detailed sedimentological and structural analysis at several sites in the Varangerfjorden area reveals complex soft sediment deformation at various scales in conglomerate, sandstone and diamictite. Deformation is predominantly ductile and includes anticlinal and synclinal folding, flow noses, flame structures, recumbent folding and shear structures. The deformed sediments are associated predominantly with conglomerate and sandstone, which record glaciofluvial and deltaic depositional conditions. Some deformations can be attributed to rapid deposition and slumping, whereas others appear to record shear stress associated with overriding ice. The scale, style and range of deformation, together with the coarse-grained nature of the deformed sediments and facies associations, suggest that these were unfrozen outwash sediments that were overridden by ice and resedimented in a dynamic ice-proximal setting. Whereas recent studies of diamictite-bearing strata of the Smalfjord Formation had revealed no clear evidence of glacial influence on deposition, deformation structures documented here suggest that glacial conditions prevailed on the basin margin during deposition of Smalfjord Formation sediments, with sedimentary facies and deformation structures typical of temperate ice-proximal settings.  相似文献   

8.
《Sedimentology》2018,65(3):639-669
Active margin continental slope outcrops from the Eocene Juncal Formation, the Eocene La Jolla Group and the Miocene Capistrano Formation display sedimentary structures and depositional geometries that suggest deposition from Froude supercritical flow, based on comparison to strata produced by flume experiments. These deposits range from boulder‐size soft clasts and cobble‐size hard clasts to silt and mud, and display long‐wavelength and low‐amplitude convex‐up and concave‐up geometries that range from centimetre to hundreds of metres scale, low‐angle foresets and backsets, and common internal and bounding erosion surfaces from centimetres to tens of metres in depth. In places, planar laminations, structureless beds and normally graded beds are laterally or vertically associated with such structures. In other places, consistent backsets or deep and steep‐sided scours occur. This study aimed to discuss the origin of the observed bedforms, contributed to recognition of supercritical flow deposits on continental slopes and expanded the outcrop examples of supercritical flow deposits to silt and mud. This work implies that the erosive and powerful Froude supercritical flow turbidity currents may have a substantial impact on erosional and depositional dynamics on deepwater slopes, especially on active margins due to the steep gradients and high sediment supply.  相似文献   

9.
张廷山  杜翔  杨巍  陈晓慧 《沉积学报》2017,35(2):253-263
地质历史时期软沉积物变形构造在不同时空沉积岩中均有分布,然而学术界对其变形过程、作用力及触发机制等仍存在许多争议。通过对米仓山前缘野外露头观测,早志留世砂岩、粉砂岩、页岩地层中,发育有多套软沉积物变形构造,其层位分布稳定,但不同层位的形态特征差异较大,包括波浪状变形层构造、包卷层理、枕状(椭球状)构造、火焰构造等,多与丘状交错层理相伴生,可分为三种组合类型,均发育于中陆棚沉积环境中。基于该区软沉积物变形构造特征,结合碳同位素分析、古气候、古板块资料,并与现代飓风研究成果对比,认为研究区早志留世时大体上处于风暴频繁的炎热环境,区内软沉积物变形构造多为风暴作用的结果,较强的风暴触及海底,使未固结成岩的沉积物的孔隙压力增加,切变强度降低,使之液化,进而发生变形。米仓山前缘早志留世软沉积物变形构造的发现及其触发机制的探讨对区内古地理、古气候的恢复,以及古扬子板块的演化具有重要的意义。  相似文献   

10.
Soft‐sediment deformation of contorted and massive sandstone is common throughout much of the siliciclastic record, but clastic pipes represent a distinctive class of pressurized synsedimentary features. Remarkable centimetre to metre‐scale clastic pipe exposures in the Jurassic Navajo Sandstone of Utah (USA) establish a range of pipe sizes, expressions and relationships to the host rock in an erg margin setting, traditionally thought to be just a dry desert system. In particular, the field and laboratory characterizations of cylindrical pipes show internal concentric, annular rings that imply water fluidization, with alignment of long grain axes due to shear flow along pipe margins. Central interior parts of decimetre‐scale pipes appear massive in plan view, but display weakly developed pseudobedding from post‐pressure release, gravitational settling in the cross‐sectional view. Deformation features of conjugate fractures, ring faults, hypotrochoid patterns (geometric arcs and circles) and breccia in the host material reflect both brittle and ductile behaviour in response to the fluidization and injection of the clastic pipes. The stratigraphic context of individual pipes and the stratabound intervals of pipe features imply dynamic deformation nearly coincident with deposition in this Early Jurassic aeolian system related to multiple factors of groundwater expulsion, timing and local host sediment properties that influenced pipe development. Although the pipe features might be easily overlooked as a smaller scale feature of soft‐sediment deformation in dune deposits, these are valuable environmental indications of disrupted fluid pathways within porous, reservoir quality sands, associated with possible combinations of periodic springs, high water‐table conditions and strong ground‐motion events. These pipe examples may be important analogues where exposures are not so clear, with applications to diverse modern and ancient clastic settings internationally on Earth as well as in planetary explorations such as on Mars.  相似文献   

11.
在野外考察过程中,于新疆乌恰地区早侏罗世康苏组沼泽相砂岩层中,发现并识别出软沉积物液化变形层,变形包括负载构造,球枕构造及卷曲变形构造。通过模拟试验的对比研究认为,该软沉积物变形机制与液化作用有关,触发沉积物液化的动力是古地震,并且根据地震震级与液化最大震中距的关系,推测出造成早侏罗世软沉积物变形的里氏地震震级为6相似文献   

12.
Earthquake, as disastrous events in geological history, can be recorded as soft-sediment deformation. In the Palaeogene of the East China Sea shelf, the soft-sediment deformation related to earthquake event is recognized as seismic micro-fractures, micro-corrugated laminations, liquefied veins, ‘vibrated liquefied layers’, deformed cross laminations and convolute laminations, load structures, flame structures, brecciation, slump structures and seismodisconformity. There exists a lateral continuum, the wide spatial distribution and the local vertical continuous sequences of seismites including slump, liquefaction and brecciation. In the Palaeogene of East China Sea shelf, where typical soft-sediment deformation structures were developed, clastic deposits of tidal-flat, delta and river facies are the main background deposits of Middle-Upper Eocene Pinghu Formation and Oligocene Huagang Formation. This succession also records diagnostic marks of event deposits and basinal tectonic activities in the form of seismites.  相似文献   

13.
High-resolution seismic imaging and piston coring in Lake Lucerne, Switzerland, have revealed surprising deformation structures in flat-lying, unconsolidated sediment at the foot of subaqueous slopes. These deformation structures appear beneath wedges of massflow deposits and resemble fold-and-thrust belts with basal décollement surfaces. The deformation is interpreted as the result of gravity spreading induced by loading of the slope-adjacent lake floor during massflow deposition. This study investigated four earthquake-triggered lateral mass-movement deposits in Lake Lucerne affecting four sections of the lake floor with areas ranging from 0·25 to 6·5 km2 in area. Up to 6 m thick sediment packages draping the subaqueous slopes slid along the acoustic basement. The resulting failure scars typically lie in water depths of >30 m on slopes characterized by downward steepening and inclinations of >10°. From the base-of-slope to several hundred metres out onto the flat plains, the wedges of massflow deposits overlie deeply (10–20 m) deformed basin-plain sediment characterized by soft sediment fold-and-thrust belts with arcuate strikes and pronounced frontal thrusts. The intensity of deformation decreases towards the more external parts of the massflow wedges. Beyond the frontal thrust, the overridden lake floor remains mostly undisturbed. Geometrical relationships between massflow deposits and the deformed basin-plain sediment indicate that deformation occurred mainly during massflow deposition. Gravity spreading induced by the successive collapse of the growing slope-adjacent massflow wedge is proposed as the driving mechanism for the deformation. The geometry of fjord-type lakes with sharp lower slope breaks favours the deposition of thick, basin-marginal massflow wedges, that effectively load and deform the underlying sediment. In the centre of the basins, the two largest massflow deposits described are directly overlain by thick contained (mega-)turbidites, interpreted as combined products of the suspension clouds set up by subaqueous mass movements and related tsunami and seiche waves.  相似文献   

14.
Late Albian to Cenomanian upper shoreface deposits from the Grajaú Basin, northern Brazil, consist of well‐sorted, very fine‐ to fine‐grained sandstones with swaley, trough, tabular and minor hummocky cross‐stratification. A striking feature of these deposits is the abundance of large‐scale scour‐and‐fill structures, which consist of regularly spaced, repetitive, very shallow swales with either symmetrical or asymmetrical profiles, arranged along an undulose surface or as a succession of superimposed troughs. The sediment filling these scours is characterized by very fine‐grained sandstone with gently undulose, near‐parallel lamination to very low‐angle dipping cross‐stratification intergraded with swaley and hummocky cross‐stratification. The nature of the scours and the sedimentary structures of their fills reveal the action of combined flows, which are hydrodynamically similar to those developed during storms. However, it is speculated that the combined flows responsible for the genesis of these structures were formed by tsunami waves enhanced by tsunami‐induced ebb currents and/or tidal currents. This interpretation is proposed on the basis of several lines of reasoning: (1) palaeogeographic reconstructions of the study area during the late Cretaceous show that it was outside the belt favourable for the development of storms; (2) comparison of the scour‐and‐fill structures with stratigraphically correlatable deposits exposed north of the study area, where similar features occur in association with abundant seismically induced, soft‐sediment deformation structures; and (3) the presence of several styles of soft‐sediment deformation features (i.e. convolute lamination, bed collapse, large‐scale folds, massive bedding, sand‐filled fractures and diastasis cracks) are suggestive of synsedimentary seismic activity in Cretaceous deposits located in and near to the study area. This study proposes that episodic, high‐amplitude tsunami waves, enhanced by tsunami‐induced ebb currents, develop powerful flows capable of producing complex patterns of erosion and sedimentation, which may be represented by scour‐and‐fill structures similar to those described here.  相似文献   

15.
Identifying the driving mechanisms of soft‐sediment deformation in the geological record is the subject of debate. Thawing of ice‐rich clayey silt above permafrost was proved experimentally to be among the processes capable of triggering deformation. However, previous work has failed so far to reproduce similar structures in sand. This study investigates fluidization and intrusive ice formation from soil models in the laboratory. Experimental conditions reproduce the growth of ice‐cored mounds caused by pore water pressure increase during freeze‐back of sand in a permafrost context. Excess pore water pressure causes hydraulic fracturing and the development of water lenses beneath the freezing front. Later freezing of the water lenses generates intrusive ice. The main structures consist of sand dykes and sills formed when the increase in pore water pressure exceeds a critical threshold, and soft‐sediment deformations induced by subsidence during ice melt. The combination of processes has resulted in diapir‐like structures. The experimental structures are similar to those described in Pleistocene sites from France. These processes constitute a credible alternative to the seismic hypothesis evoked to explain soft‐sediment deformation structures in other European regions subjected to Pleistocene cold climates.  相似文献   

16.
杨文涛  王敏 《古地理学报》2017,19(1):117-128
河南南召盆地上三叠统太山庙组中发现的软沉积物变形构造包括同沉积断层、液化均一层与泄水脉、底劈构造、塑性变形层、碎裂岩及大型负载构造。它们集中保存在太山庙组中段深湖环境中,以该层段为界,其下水体渐深,其上水体渐浅。多数软沉积物变形构造与浊流沉积砂体相伴生,也可保存在泥岩层中,其形成可能与浊流沉积过程相关,但古地震活动是主要的触发机制。软沉积物变形的类型包括液化变形、塑性变形和脆性变形,指示了高强度的古地震活动,记录了秦岭造山带印支期一次强烈的造山活动。造山带逆冲推覆作用造成南召盆地的抬升,代表了前陆盆地系统中的楔顶沉积。  相似文献   

17.
湖相沉积岩中的同生变形构造及其地质意义   总被引:1,自引:0,他引:1  
本文以渤海湾周缘地区的东濮凹陷下第三系沙三沙四段湖相沉积岩中出现的同生变形构造为例,讨论其命名、分类、主要类型、形成机理及其在分析古沉积环境、古地理和古构造等方面的意义。这项讨论为研究陆相含油气盆地的同生变形构造提供了对比依据。  相似文献   

18.
A middle Pleistocene coarse‐grained canyon fill succession (the Serra Mulara Formation) crops out in the northern sector of the Crotone Basin, a forearc basin located on the Ionian side of the Calabrian Arc and active from the Serravallian to middle Pleistocene. This succession is an example of coarse‐grained submarine canyon fill, which consists of a north‐west to south‐east elongated body (4·25 km long and up to 1·5 km wide) laterally confined by a deep‐water clayey and silty succession and located behind the modern Neto delta (north of Crotone). The thickness of the unit reaches 178 m. The lower part of the canyon fill is dominated by gravelly to sandy density‐flow deposits containing abundant bivalve and gastropod fragments, passing upward into a succession composed of metre‐scale to decimetre‐scale density‐flow deposits forming sandstone–mudstone couplets. Sandstone deposits are mostly structureless and planar‐laminated, whereas the clayey layers record hemipelagic deposition during quieter phases. This succession is overlain by another composed of thicker structureless sandstones alternating with layers of interlaminated mudstones and sandstones, which contain leaf remnants and fresh water ostracods, and are linked directly to river floods. The canyon fill is overlain by gravelly to sandy continental deposits recording a later stage of emergence. Facies analysis, together with micropalaeontological data from the hemipelagic units, suggests that the studied canyon fill records, firstly, a progressive gravel material cut‐off during deposition due to an overall relative sea‐level rise, leading to a progressive increase in the entrapment of sediment in fluvial to shallow‐marine systems, and secondly, a generalized relative sea‐level lowering. This trend probably reflects high‐magnitude glacio‐eustatic changes combined with the regional uplift of the region, ultimately leading to emergence.  相似文献   

19.
Water escape structures in coarse-grained sediments   总被引:10,自引:0,他引:10  
Three processes of water escape characterize the consolidation of silt-, sand-and gravel-sized sediments. Seepage involves the slow upward movement of pore fluids within existing voids or rapid flow within compact and confined sediments. Liquefaction is marked by the sudden breakdown of a metastable, loosely packed grain framework, the grains becoming temporarily suspended in the pore fluid and settling rapidly through the fluid until a grain-supported structure is re-established. Fluidization occurs when the drag exerted by moving pore fluids exceeds the effective weight of the grains; the particles are lifted, the grain framework destroyed, and the sediment strength reduced to nearly zero. Diagenetic sedimentary structures formed in direct response to processes of fluid escape are here termed water escape structures. Four main types of water escape structures form during the fluidization and liquefaction of sands: (1) soft-sediment mixing bodies, (2) soft-sedimsnt intrusions, (3) consolidation laminations, and (4) soft-sediment folds. These structures represent both the direct rearrangement of sediment grains by escaping fluids and the deformation of hydroplastic, liquefied, or fluidized sediment in response to external stresses. Fundamental controls on sediment consolidation are exerted by the bulk sediment properties of grain size, packing, permeability, and strength, which together determine whether consolidation will occur and, if so the course it follows, and by external disturbances which act to trigger liquefaction and fluidization. The liquefaction and fluidization of natural sands usually accompanies the collapse of loosely packed cross-bedded deposits. This collapse is commonly initiated by water forced into the units as underlying beds, especially muds and clays, consolidate. The consolidation of subjacent units is often triggered by the rapid deposition of the sand itself, although earthquakes or other disturbances are probably influential in some instances. Water escape structures most commonly form in fine- to medium-grained sands deposited at high instantaneous and mean sedimentation rates; they are particularly abundant in cross-laminated deposits but rare in units deposited under upper flow regime plane bed conditions. Their development is favoured by upward decreasing permeability within sedimentation units such as normally graded turbidites. They are especially common in sequences made up of alternating fine-(clay and mud) and coarse-grained (sand) units such as deep-sea flysch prodelta, and, to a lesser extent, fluvial point bar, levee, and proximal overbank deposits.  相似文献   

20.
山东灵山岛早白垩世复理石软沉积物变形期次解析   总被引:6,自引:0,他引:6  
前人对软沉积物变形期次研究多数集中于触发变形的地震事件的周期,而对滑塌体内部软沉积物变形期次研究较少。山东灵山岛早白垩世复理石形成于残余盆地背景,且由于地震频发导致滑塌沉积广泛发育。滑塌沉积层中发育有丰富的软沉积物变形构造,如:同沉积滑塌褶皱、底模构造、剖面X形共轭逆断层、同沉积布丁构造、砂岩层断块及变形团块、微型地垒—地堑组合和叠瓦状倒转紧闭褶皱等。不同类型和不同部位的软沉积物变形构造显示出发育期次不同的特征。本文以灵山岛修船厂附近滑塌沉积层为例,分析软沉积物变形构造的变形机制,并将其发育期次大致分为滑塌前、滑塌中和滑塌后三个阶段。只有部分滑塌中的软沉积物变形构造具有滑塌指向意义,而滑塌前的变形构造不能用来判别滑塌体的搬运方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号