首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Estuaries of the southeastern Atlantic coastal plain are dominated by shallow meso-tidal bar-built systems interspersed with shallow sounds and both low flow coastal plain and high flow piedmont riverine systems. Three general geographical areas can be discriminated: the sounds of North Carolina; the alternating series of riverine and ocean dominated bar-built systems of South Carolina, Georgia, and northeast Florida, and the subtropical bar-built estuaries of the Florida southeast coast. The regional climate ranges from temperate to subtropical with sea level rise and hurricanes having a major impact on the region's estuaries because of its low and relatively flat geomorphology. Primary production is highest in the central region. Seagrasses are common in the northern and southern most systems, while intertidal salt marshes composed ofSpartina alterniflora reach their greatest extent and productivity in South Carolina and Georgia. Nuisance blooms (cyanobacteria, dinoflagellates, and cryptomonads) occur more frequently in the northern and extreme southern parts of the region. Fishery catches are highest in the North Carolina and Florida areas. Human population growth with its associated urbanization reaches a maximum in Florida and it is thought that the long-term sustainability of the Florida coast for human habitation will be lost within the next 25 years. Tidal flushing appears to play an important role in mitigating anthropogenic inputs in systems of moderate to high tidal range, i.e., the South Carolina and Georgia coasts. The most pressing environmental problems for the estuaries of the southeastern Atlantic coast seem to be nutrient loading and poor land use in North Carolina and high human population density and growth in Florida. The future utilization of these estuarine systems and their services will depend on the development of improved management strategies based on improved data quality.  相似文献   

2.
Land-based eutrophication is often associated with blooms of green macroalgae, resulting in negative impacts on seagrasses. The generality of this interaction has not been studied in upwelling-influenced estuaries where oceanic nutrients dominate seasonally. We conducted an observational and experimental study with Zostera marina L. and ulvoid macroalgae across an estuarine gradient in Coos Bay, Oregon. We found a gradient in mean summer macroalgal biomass from 56.1 g dw 0.25 m−2 at the marine site to 0.3 g dw 0.25 m−2 at the riverine site. Despite large macroalgal blooms at the marine site, eelgrass biomass exhibited no seasonal or interannual declines. Through experimental manipulations, we found that pulsed additions of macroalgae biomass (+4,000 mL) did not affect eelgrass in marine areas, but it had negative effects in riverine areas. In upwelling-influenced estuaries, the negative effects of macroalgal blooms are context dependent, affecting the management of seagrass habitats subject to nutrient inputs from both land and sea.  相似文献   

3.
Tillamook Bay, Oregon, is a drowned river estuary that receives freshwater input from 5 rivers and exchanges ocean water through a single channel. Similar to other western United States estuaries, the bay exhibits a strong seasonal change in river discharge in which there is a pronounced winter maximum and summer minimum in precipitation and runoff. The behavior of major inorganic nutrients (phosphorus, nitrogen, and silica) within the watershed is examined over seasonal cycles and under a range of river discharge conditions for October 1997–December 1999. Monthly and seasonal sampling stations include transects extending from the mouth of each river to the mouth of the estuary as well as 6–10 sites upstream along each of the 5 major rivers. Few studies have examined nutrient cycling in Pacific Northwest estuaries. This study evaluates the distributions of inorganic nutrients to understand the net processes occurring within this estuary. Based upon this approach, we hypothesize that nutrient behavior in the Tillamook Bay estuary can be explained by two dominant factors: freshwater flushing time and biological uptake and regeneration. Superimposed on these two processes is seasonal variability in nutrient concentrations of coastal waters via upwelling. Freshwater flushing time determines the amount of time for the uptake of nutrients by phytoplankton, for exchange with suspended particles, and for interaction with the sediments. Seasonal coastal upwelling controls the timing and extent of oceanic delivery of nutrients to the estuary. We suggest that benthic regeneration of nutrients is also an important process within the estuary occurring seasonally according to the flushing characteristics of the estuary. Silicic acid, nitrate, and NH4 + supply to the bay appears to be dominated by riverine input. PO4 −3 supply is dominated by river input during periods of high river flow (winter months) with oceanic input via upwelling and tidal exchange important during other times (spring, summer, and fall months). Departures from conservative mixing indicate that internal estuarine sources of dissolved inorganic phosphorus and nitrogen are also significant over an annual cycle.  相似文献   

4.
Atmospheric deposition of nitrogen (AD-N) is a significant source of nitrogen enrichment to nitrogen (N)-limited estuarine and coastal waters downwind of anthropogenic emissions. Along the eastern U.S. coast and eastern Gulf of Mexico, AD-N currently accounts for 10% to over 40% of new N loading to estuaries. Extension of the regional acid deposition model (RADM) to coastal shelf waters indicates that 11, 5.6, and 5.6 kg N ha−1 may be deposited on the continental shelf areas of the northeastern U.S. coast, southeast U.S. coast, and eastern Gulf of Mexico, respectively. AD-N approximates or exceeds riverine N inputs in many coastal regions. From a spatial perspective, AD-N is a unique source of N enrichment to estuarine and coastal waters because, for a receiving water body, the airshed may exceed the watershed by 10–20 fold. AD-N may originate far outside of the currently managed watersheds. AD-N may increase in importance as a new N source by affecting waters downstream of the oligohaline and mesohaline estuarine nutrient filters where large amounts of terrestrially-supplied N are assimilated and denitrified. Regionally and globally, N deposition associated with urbanization (NOx, peroxyacetyl nitrate, or PAN) and agricultural expansion (NH4 + and possibly organic N) has increased in coastal airsheds. Recent growth and intensification of animal (poultry, swine, cattle) operations in the midwest and mid-Atlantic regions have led to increasing amounts of NH4 + emission and deposition, according to a three decadal analysis of the National Acid Deposition Program network. In western Europe, where livestock operations have dominated agricultural production for the better part of this century, NH4 + is the most abundant form of AD-N. AD-N deposition in the U.S. is still dominated by oxides of N (NOx) emitted from fossil fuel combustion; annual NH4 + deposition is increasing, and in some regions is approaching total NO3 deposition. In receiving estuarine and coastal waters, phytoplankton community structural and functional changes, associated water quality, and trophic and biogeochemical alterations (i.e, algal blooms, hypoxia, food web, and fisheries habitat disruption) are frequent consequences of N-driven eutrophication. Increases in and changing proportions of various new N sources regulate phytoplankton competitive interactions, dominance, and successional patterns. These quantitative and qualitative aspects of AD-N and other atmospheric nutrient sources (e.g., iron) may promote biotic changes now apparent in estuarine and coastal waters, including the proliferation of harmful algal blooms, with cascading impacts on water quality and fisheries.  相似文献   

5.
Material transfer between estuaries and the nearshore zone has long been of interest, but information on the processes affecting Pacific Northwest estuaries has lagged behind other areas. The west coast of the U.S. is a region of seasonally variable upwelling that results in enhanced phytoplankton production in the nearshore zone. We examined estuarine-nearshore links over time by measuring physical oceanographic variables and chlorophylla concentration from an anchor station in South Slough, Oregon. Data was collected during 24-h cruises conducted at approximately weekly intervals during summer 1996 and spring 1997. The results demonstrate that the physical oceanography of this estuarine site was strongly influenced by the coastal ocean. Marine water reached the estuarine site on every sampled tide, and chlorophylla was clearly advected into the estuary with this ocean water. In contrast, phytoplankton concentrations were comparatively reduced in the estuarine water. There were, however, large fluctuations in the import of chlorophyll over the course of the summer. These variations likely reflect upwelling-generated phytoplankton production in the coastal ocean and subsequent cross-shelf transport to the estuary. Suspension feeding organisms in South Slough likely depend on the advection of this coastally-derived phytoplankton. The large allochthonous chlorophyll input measured for this system appears dissimilar from most estuaries studied to date. Previous investigations have focused on the outwelling and inwelling of materials in estuaries. We must now consider the influence of coastal upwelling and downwelling processes on estuarine material exchange.  相似文献   

6.
Seasonal wind-driven upwelling along the U.S. West Coast supplies large concentrations of nitrogen to surface waters that drives high primary production. However, the influence of coastal upwelled nutrients on phytoplankton productivity in adjacent small estuaries and bays is poorly understood. This study was conducted in Drakes Estero, California, a low inflow estuary located in the Point Reyes National Seashore and the site of an oyster mariculture facility that produces 40 % of the oysters harvested in California. Measurements of nutrients, chlorophyll a, phytoplankton functional groups, and phytoplankton carbon and nitrogen uptake were made between May 2010 and June 2011. A sea-to-land gradient in nutrient concentrations was observed with elevated nitrate at the coast and higher ammonium at the landward region. Larger phytoplankton cells (>5 μm diameter) were dominant within the outer and middle Estero where phytoplankton primary productivity was fueled by nitrate and f-ratios were >0.5; the greatest primary production rates were in the middle Estero. Primary production was lowest within the inner Estero, where smaller phytoplankton cells (<5 μm) were dominant, and nitrogen uptake was dominated by ammonium. Phytoplankton blooms occurred at the outer and middle Estero and were dominated by diatoms during the spring and dry-upwelling seasons but dinoflagellates during the fall. Small flagellated algae (>2 μm) were dominant at the inner Estero where no blooms occurred. These results indicate that coastal nitrate and phytoplankton are imported into Drakes Estero and lead to periods of high new production that can support the oyster mariculture; a likely scenario also for other small estuaries and bays.  相似文献   

7.
Hydrographic patterns and chlorophyll concentrations in the Columbia River estuary were compared for spring and summer periods during 2004 through 2006. Riverine and oceanic sources of chlorophyll were evaluated at stations along a 27-km along-estuary transect in relation to time series of wind stress, river flow, and tidal stage. Patterns of chlorophyll concentration varied between seasons and years. In spring, the chlorophyll distribution was dominated by high concentrations from freshwater sources. Periods of increased stream flow limited riverine chlorophyll production. In summer, conversely, upwelling winds induced input of high-salinity water from the ocean to the estuary, and this water was often associated with relatively high chlorophyll concentrations. The frequency, duration, and intensity of upwelling events varied both seasonally and interannually, and this variation affected the timing and magnitude of coastally derived material imported to the estuary. The main source of chlorophyll thus varied from riverine in spring to coastal in summer. In both spring and summer seasons and among years, modulation of the spring/neap tidal cycle determined stratification, patterns of mixing, and the fate of (especially freshwater) phytoplankton. Spring tides had higher mixing and neap tides greater stratification, which affected the vertical distribution of chlorophyll. The Columbia River differs from the more tidally dominated coastal estuaries in the Pacific Northwest by its large riverine phytoplankton production and transfer of this biogenic material to the estuary and coastal ocean. However, all Pacific Northwest coastal estuaries investigated to date have exhibited advection of coastally derived chlorophyll during the upwelling season. This constitutes a fundamental difference between Pacific Northwest estuaries and systems not bounded by a coastal upwelling zone.  相似文献   

8.
We focus on the question of whether high phytoplankton production events observed in a United States Pacific Northwest estuary consist of estuarine species blooms fueled by oceanic nutrient input or reflect offshore oceanic blooms that have advected into the estuary. Our approach is to use certain phytoplankton species as indicators associated with water mass origin, either estuarine or oceanic, to help resolve this question in Willapa Bay, Washington. We used species analysis and primary production data from 10 selected dates in May–September of 1998 and 1999, representing periods of high through low productivity. Out of 108 phytoplankton species identified from Willapa Bay, nine were selected and tested as indicators of oceanic species, six as estuarine, and two as surf zone. Our test results demonstrated the oceanic and estuarine species to be satifactory indicators of source waters. The prevalence of these species indicators in our samples revealed that the highest primary production and the appearance ofPseudo-nitzschia spp. were associated with oceanic intrusions of phytoplankton biomass into Willapa Bay. While the largest blooms were oceanic in origin, numerous medium-sized production events were from either oceanic, surf zone, or estuarine sources, indicating a complex situation.  相似文献   

9.
The global increase of noxious bloom occurrences has increased the need for phytoplankton management schemes. Such schemes require the ability to predict phytoplankton succession. Equilibrium Resource Competition theory, which is popular for predicting succession in lake systems, may not be useful in more dynamic environments, such as estuaries and coastal waters. We developed a mathematical model better suited to nonsteady state conditions. Our model incorporated luxury consumption of nonlimiting nutrients and cell starvation processes into a cell-quota-based nutrient-phytoplankton scheme. Nutrient pools described included nitrogen and phosphorus. Phytoplankton groups characterized in the model were a phosphorus-specialist, a nitrogen-specialist, and an intermediate group. We emphasized competition for nutrients under conditions of continuous and pulsing nutrient supply, as well as different nutrient loading ratios. Our results suggest that delivering nutrients in a pulsing fashion produces dramatic differences in phytoplankton community composition over a given period, that is, reduction of accumulated biomass of slower growing algae. Coastal managers may be able to inhibit initiation of slow-growing noxious blooms in estuaries and coastal waters by pulsing nutrients inputs from point sources, such as sewage treatment plants.  相似文献   

10.
The use of multiple stable isotopes in the study of trophic relationships in temperate estuaries has usually been limited to euhaline systems, in which phytoplankton, benthic microalgae, andSpartina alterniflora are major sources of organic matter for consumers. Within large estuaries such as Chesapeake Bay, however, many species of consumers are found in the upper mesohaline to oligohaline portions. These lower salinity wetlands have a greater abundance of macrophytes that use C3 photosynthesis to fix carbon, in addition toS. alterniflora, which fixes carbon via the C4 photosynthetic pathway. In a broad survey of the biota and sediments of a brackish tidal creek tributary to Chesapeake Bay, combined δ13C and δ34S measurements disclosed a balanced contribution to secondary production from phytoplankton, C3 macrophytes,Spartina sp., and benthic microalgae. Surface sediment δ13C suggested that the organic matter from C3 plants was derived both from allochthonous sources (terrestrial runoff) and from autochthonous production (marsh macrophytes). Unlike most estuarine systems studied to date, which are dominated by algae (phytoplankton and benthic microalgae) and C4 macrophytes, C3 plants are of greater importance in the diets of consumers in this low-salinity creek system.  相似文献   

11.
Geographic signatures are physical, chemical, biotic, and human-induced characteristics or processes that help define similar or unique features of estuaries along latitudinal or geographic gradients. Geomorphologically, estuaries of the northeastern U.S., from the Hudson River estuary and northward along the Gulf of Maine shoreline, are highly diverse because of a complex bedrock geology and glacial history. Back-barrier estuaries and lagoons occur within the northeast region, but the domiant type is the drowned-river valley, often with rocky shores. Tidal range and mean depth of northeast estuaries are generally greater when compared to estuaries of the more southern U.S. Atlantic coast and Gulf of Mexico. Because of small estuarine drainage basins, low riverine flows, a bedrock substrate, and dense forest cover, sediment loads in northeast estuaries are generally quite low and water clarity is high. Tidal marshes, seagrass meadows, intertidal mudflats, and rocky shores represent major habitat types that fringe northeast estuaries, supporting commercially-important fauna, forage nekton and benthos, and coastal bird communities, while also serving as links between deeper estuarine waters and habitats through detritus-based pathways. Regarding land use and water quality trends, portions of the northeast have a history of over a century of intense urbanization as reflected in increased total nitrogen and total phosphorus loadings to estuaries, with wastewater treatment facilities and atmospheric deposition being major sources. Agricultural inputs are relatively minor throughout the northeast, with relative importance increasing for coastal plain estuaries. Identifying geographic signatures provides an objective means for comparing the structure, function, and processes of estuaries along latitudinal gradients.  相似文献   

12.
We conducted monthly bioassay experiments to characterize light and nutrient use efficiency of phytoplankton communities from the chlorophyll-a maximum located in the tidal freshwater region of the James River Estuary. Bioassay results were interpreted in the context of seasonal and inter-annual variation in nutrient delivery and biomass yield using recent and long-term data. Bioassay experiments suggest that nutrient limitation of phytoplankton production has increased over the past 20 years coinciding with reductions in point source inputs and estuarine dissolved nutrient concentrations. Despite increasing nutrient stress, chlorophyll concentrations have not declined due to more efficient nutrient usage. Greater CHLa yield (per unit of N and P) may be due to feedback mechanisms by which the presence of toxin-producing cyanobacteria inhibits grazing by benthic and pelagic filter-feeders. Seasonal patterns in nutrient limitation indicate that phytoplankton in the James respond to variations in inflow concentrations of dissolved nutrients. This association gives rise to an atypical pattern whereby the severity of nutrient limitation diminishes with low discharge in late summer due to minimal dilution of local point sources inputs by riverine discharge. We suggest that this may be a common feature of estuaries located in proximity to urbanized areas.  相似文献   

13.
Temporal and spatial variations in phytoplankton in Asan Bay, a temperate estuary under the influence of monsoon, were investigated over an annual cycle (2004). Phytoplankton blooms started in February (>20 μg chl l−1) and continued until April (>13 μg chl l−1) during the dry season, especially in upstream regions. The percentage contribution of large phytoplankton (micro-sized) was high (78–95%) during the blooms, and diatoms such as Skeletonema costatum and Thalassiosira spp. were dominant. The precipitation and freshwater discharge from embankments peaked and supplied nutrients into the bay during the monsoon event, especially in July. Species that favor freshwater, such as Oscillatoria spp. (cyanobacteria), dominated during the monsoon period. The phytoplankton biomass was minimal in this season despite nutrient concentrations that were relatively sufficient (enriched), and this pattern differed from that in tropical estuaries affected by monsoon and in temperate estuaries where phytoplankton respond to nutrient inputs during wet seasons. The flushing time estimated from the salinity was shorter than the doubling time in Asan Bay, which suggests that exports of phytoplankton maximized by high discharge directly from embankments differentiate this bay from other estuaries in temperate and tropical regions. This implies that the change in physical properties, especially in the freshwater discharge rates, has mainly been a regulator of phytoplankton dynamics since the construction of embankments in Asan Bay.  相似文献   

14.
Although marine lagoons are ubiquitous features along coastal margins, studies investigating the dynamics of metal, organic matter, and nutrient concentrations in such systems are rare. Here we present a comprehensive examination of the temporal and spatial gradients in dissolved trace metals (Ag, Cd, Cu, Mn, Pb), organic and inorganic nutrients (POC, PON, DOC, N03 , NH4 +, H4SiO4, PO4 −3, and urea), and algal biomass in a lagoon estuary, Great South Bay (GSB), New York, USA. While this estuary has experienced a series of environmental problems during recent decades (urbanization, loss of fisheries, harmful algal blooms), root causes are largely unknown, in part because levels of bioactive substances, such as trace metals, have never been measured. Sampling was undertaken within multiple estuarine, riverine, and groundwater sites during spring, summer, and fall. Trace metal tracers (e.g., Ag, Mn) and statistical analyses were used to differentiate the influences of natural and anthropogenic processes on the chemical composition of the lagoon. Our analyses revealed three clusters of biogeochemical constituents that behaved similarly in GSB: constituents under strong biological control such as POC, PON, DOC and chlorophyll,a; elements indicative of benthic remobilization processes such as Mn, Cd, and Cu; and constituents strongly influence by anthropogenic processes such as Ag, Pb, PO4 −3, NO3 , and NH4 +. Although GSB is surrounded by a densely populated watershed (c. 1 million people), it does not appear to be significantly contaminated by trace metals compared to other urban estuaries. Levels of DOC (up to 760 μM) in GSB were well correlated with phytoplankton biomass and exceeded at least 98% of values reported in similar mid Atlantic estuaries at the same salinities. These high levels of DOC are likely to be an important source of carbon export to the coastal ocean and likely promote mixotrophic harmful algal blooms in this system.  相似文献   

15.
Coastal ecosystems are characterized by relatively deep, plankton-based estuaries and much shallower systems where light reaches the bottom. These latter systems, including lagoons, bar-built estuaries, the fringing regions of deeper systems, and other systems of only a few meters deep, are characterized by a variety of benthic primary producers that augment and, in many cases, dominate the production supplied by phytoplankton. These “shallow coastal photic systems” are subject to a wide variety of both natural and anthropogenic drivers and possess numerous natural “filters” that modulate their response to these drivers; in many cases, the responses are much different from those in deeper estuaries. Natural drivers include meteorological forcing, freshwater inflow, episodic events such as storms, wet/dry periods, and background loading of optically active constituents. Anthropogenic drivers include accelerated inputs of nutrients and sediments, chemical contaminants, physical alteration and hydrodynamic manipulation, climate change, the presence of intensive aquaculture, fishery harvests, and introduction of exotic species. The response of these systems is modulated by a number of factors, notably bathymetry, physical flushing, fetch, sediment type, background light attenuation, and the presence of benthic autotrophs, suspension feeding bivalves, and fringing tidal wetlands. Finally, responses to stressors in these systems, particularly anthropogenic nutrient enrichment, consist of blooms of phytoplankton, macroalgae, and epiphytic algae, including harmful algal blooms, subsequent declines in submerged aquatic vegetation and loss of critical habitat, development of hypoxia/anoxia particularly on short time scales (i.e., “diel-cycling”), fish kills, and loss of secondary production. This special issue of Estuaries and Coasts serves to integrate current understanding of the structure and function of shallow coastal photic systems, illustrate the many drivers that cause change in these systems, and synthesize their varied responses.  相似文献   

16.
Phytoplankton variability is a primary driver of chemical and biological dynamics in the coastal zone because it directly affects water quality, biogeochemical cycling of reactive elements, and food supply to consumer organisms. Much has been learned about patterns of phytoplankton variability within individual ecosystems, but patterns have not been compared across the diversity of ecosystem types where marine waters are influenced by connectivity to land. We extracted patterns from chlorophyll-a series measured at 84 estuarine–coastal sites, using a model that decomposes time series into an annual effect, mean seasonal pattern, and residual “events.” Comparisons across sites revealed a large range of variability patterns, with some dominated by a recurrent seasonal pattern, others dominated by annual (i.e., year-to-year) variability as trends or regime shifts and others dominated by the residual component, which includes exceptional bloom events such as red tides. Why is the partitioning of phytoplankton variability at these three scales so diverse? We propose a hypothesis to guide next steps of comparative analysis: large year-to-year variability is a response to disturbance from human activities or shifts in the climate system; strong seasonal patterns develop where the governing processes are linked to the annual climate cycle; and large event-scale variability occurs at sites highly enriched with nutrients. Patterns of phytoplankton variability are therefore shaped by the site-specific relative importance of disturbance, annual climatology, and nutrient enrichment.  相似文献   

17.
Although algal blooms, including those considered toxic or harmful, can be natural phenomena, the nature of the global problem of harmful algal blooms (HABs) has expanded both in extent and its public perception over the last several decades. Of concern, especially for resource managers, is the potential relationship between HABs and the accelerated eutrophication of coastal waters from human activities. We address current insights into the relationships between HABs and eutrophication, focusing on sources of nutrients, known effects of nutrient loading and reduction, new understanding of pathways of nutrient acquisition among HAB species, and relationships between nutrients and toxic algae. Through specific, regional, and global examples of these various relationships, we offer both an assessment of the state of understanding, and the uncertainties that require future research efforts. The sources of nutrients potentially stimulating algal blooms include sewage, atmospheric deposition, groundwater flow, as well as agricultural and aquaculture runoff and discharge. On a global basis, strong correlations have been demonstrated between total phosphorus inputs and phytoplankton production in freshwaters, and between total nitrogen input and phytoplankton production in estuarine and marine waters. There are also numerous examples in geographic regions ranging from the largest and second largest U.S. mainland estuaries (Chesapeake Bay and the Albemarle-Pamlico Estuarine System), to the Inland Sea of Japan, the Black Sea, and Chinese coastal waters, where increases in nutrient loading have been linked with the development of large biomass blooms, leading to anoxia and even toxic or harmful impacts on fisheries resources, ecosystems, and human health or recreation. Many of these regions have witnessed reductions in phytoplankton biomass (as chlorophylla) or HAB incidence when nutrient controls were put in place. Shifts in species composition have often been attributed to changes in nutrient supply ratios, primarily N∶P or N∶Si. Recently this concept has been extended to include organic forms of nutrients, and an elevation in the ratio of dissolved organic carbon to dissolved organic nitrogen (DOC∶DON) has been observed during several recent blooms. The physiological strategies by which different groups of species acquire their nutrients have become better understood, and alternate modes of nutrition such as heterotrophy and mixotrophy are now recognized as common among HAB species. Despite our increased understanding of the pathways by which nutrients are delivered to ecosystems and the pathways by which they are assimilated differentially by different groups of species, the relationships between nutrient delivery and the development of blooms and their potential toxicity or harmfulness remain poorly understood. Many factors such as algal species presence/abundance, degree of flushing or water exchange, weather conditions, and presence and abundance of grazers contribute to the success of a given species at a given point in time. Similar nutrient loads do not have the same impact in different environments or in the same environment at different points in time. Eutrophication is one of several mechanisms by which harmful algae appear to be increasing in extent and duration in many locations. Although important, it is not the only explanation for blooms or toxic outbreaks. Nutrient enrichment has been strongly linked to stimulation of some harmful species, but for others it has not been an apparent contributing factor. The overall effect of nutrient over-enrichment on harmful algal species is clearly species specific.  相似文献   

18.
A hypothesis on the formation and seasonal evolution of Atlantic menhaden (Brevoortia tyrannus) juvenile nurseries in coastal estuaries is described. A series of cruises were undertaken to capture postmetamorphic juvenile menhaden and to characterize several biological and physical parameters along estuarine gradients. The two study systems, the Neuse and Pamlico rivers in North Carolina, contain important menhaden nursery grounds. Juvenile menhaden abundance was found to be associated with gradients of phytoplankton biomass as evidenced by chlorophylla levels in the upper water column. Fish abundances were only secondarily associated with salinity gradients as salinity was a factor that moderated primary production in the estuary. The persistence of spatial and temporal trends in the distribution of phytoplankton in the Neuse and Pamlico estuaries was reviewed. The review suggested that postmetamorphic juvenile menhaden modify their distribution patterns to match those created by phytoplankton biomass, which in turn makes them most abundant in the phytoplankton maxima of estuaries. Because the location of these maxima varies with the mixing and nutrient dynamics of different estuaries, so will the location of the nursery.  相似文献   

19.
Environmental factors that influence annual variability and spatial differences (within and between estuaries) in eelgrass meadows (Zostera marine L.) were examined within Willapa Bay, Washington, and Coos Bay, Oregon, over a period of 4 years (1998–2001). A suite of eelgrass metrics were recorded annually at field sites that spanned the estuarine gradient from the marine-dominated to mesohaline region of each estuary. Plant density (shoots m?2) of eelgrass was positively correlated with summer estuarine salinity and inversely correlated with water temperature gradients in the estuaries. Eelgrass density, biomass, and the incidence of flowering plants all increased substantially in Willapa Bay, and less so in Coos Bay, over the duration of the study. Warmer winters and cooler summers associated with the transition from El Niño to La Niña ocean conditions during the study period corresponded with this increase in eelgrass abundance and flowering. Large-scale changes in climate and nearshore ocean conditions may exert a strong regional influence on eelgrass abundance that can vary annually by as much as 700% in Willapa Bay. Lower levels of annual variability observed in Coos Bay may be due to the stronger and more direct influence of the nearshore Pacific Ocean on the Coos Bay study sites. The results suggest profound effects of climate variation on the abundance and flowering of eelgrass in Pacific Northwest coastal estuaries.  相似文献   

20.
The toxicPfiesteria complex are a group of dinoflagellates that have received considerable attention in recent years as causative factors in fish kill or lesion events in North Carolina estuaries and in the Pocomoke River of Chesapeake Bay. In response to the potentialPfiesteria threat, the South Carolina Task Group on Harmful Algae was formed in late 1997 and implemented programs to monitor harmful algal blooms and respond to fish kills or lesion events with particular emphasis on the Bushy Park (Cooper River, Charleston) region, a site of annually recurrent menhaden lesion events.Pfiesteria piscicida, Pfiesteria shumwayae, andCryptoperidiniopsis spp. were documented in South Carolina estuaries. Routine monitoring and fish kill or lesion event sampling consistently indicated low abundances compared to estimates from similar programs in North Carolina and Maryland that sampled areas with a history ofPfiesteria toxic activity. The finding thatPfiesteria-like organism (PLO) abundances were always low in samples collected during menhaden lesion events in Bushy Park suggested other causes for lesion progression, althoughPfiesteria spp. could not be ruled out as a factor in lesion initiation. Based on the previously demonstrated positive relationship between PLO abundance, chlorophylla, and inorganic nutrient concentrations (in laboratory experiments and North Carolina field observations), we hypothesized that the relatively low abundance ofPfiesteria spp. and other PLO (e.g.,Cryptoperidiniopsis) in South Carolina estuaries is related to the relatively low supply of phytoplankton prey, as supported by interstate comparisons in chlorophylla concentrations. Nitrate concentrations were generally much lower in South Carolina estuaries. Estuarine eutrophication may be an important consideration in explaining interstate differences in susceptibility toPfiesteria-related toxic events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号