首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High sedimentation rates along river-dominated margins make these systems important repositories for organic carbon derived from both allochthonous and autochthonous sources. Using elemental carbon/nitrogen ratios, molecular biomarker (lignin phenol), and stable carbon isotopic (bulk and compound-specific) analyses, this study examined the sources of organic carbon to the Louisiana shelf within one of the primary dispersive pathways of the Mississippi River. Surface sediment samples were collected from stations across the inner, mid, and outer Louisiana shelf, within the Mississippi River plume region, during two cruises in the spring and fall of 2000. Lignin biomarker data showed spatial patterns in terrestrial source plant materials within the river plume, such that sediments near the mouth of the Mississippi River were comparatively less degraded and richer in C4 plant carbon than those found at mid-depth regions of the shelf. A molecular and stable isotope-based mixing model defining riverine, marsh, and marine organic carbon suggested that the highest organic carbon inputs to the shelf in spring were from marine sources (55?C61% marine organic carbon), while riverine organic carbon was the highest (63%) in fall, likely due to lower inputs of marine organic carbon at this time compared with the spring season. This model also indicated that marsh inputs, ranging from 19 to 34% and 3?C15% of the organic carbon in spring and fall, respectively, were significantly more important sources of organic carbon on the inner Louisiana shelf than previously suggested. Finally, we propose that the decomposition of terrestrial-derived organic carbon (from the river and local wetlands sources) in mobile muds may serve as a largely unexplored additional source of oxygen-consuming organic carbon in hypoxic bottom waters of the Louisiana shelf.  相似文献   

2.
Large benthic foraminifera are major carbonate components in tropical carbonate platforms, important carbonate producers, stratigraphic tools and powerful bioindicators (proxies) of environmental change. The application of large benthic foraminifera in tropical coral reef environments has gained considerable momentum in recent years. These modern ecological assessments are often carried out by micropalaeontologists or ecologists with expertise in the identification of foraminifera. However, large benthic foraminifera have been under-represented in favour of macro reef-builders, for example, corals and calcareous algae. Large benthic foraminifera contribute about 5% to modern reef-scale carbonate sediment production. Their substantial size and abundance are reflected by their symbiotic association with the living algae inside their tests. When the foraminiferal holobiont (the combination between the large benthic foraminifera host and the microalgal photosymbiont) dies, the remaining calcareous test renourishes sediment supply, which maintains and stabilizes shorelines and low-lying islands. Geological records reveal episodes (i.e. late Palaeocene and early Eocene epochs) of prolific carbonate production in warmer oceans than today, and in the absence of corals. This begs for deeper consideration of how large benthic foraminifera will respond under future climatic scenarios of higher atmospheric carbon dioxide (pCO2) and to warmer oceans. In addition, studies highlighting the complex evolutionary associations between large benthic foraminifera hosts and their algal photosymbionts, as well as to associated habitats, suggest the potential for increased tolerance to a wide range of conditions. However, the full range of environments where large benthic foraminifera currently dwell is not well-understood in terms of present and future carbonate production, and impact of stressors. The evidence for acclimatization, at least by a few species of well-studied large benthic foraminifera, under intensifying climate change and within degrading reef ecosystems, is a prelude to future host–symbiont resilience under different climatic regimes and habitats than today. This review also highlights knowledge gaps in current understanding of large benthic foraminifera as prolific calcium carbonate producers across shallow carbonate shelf and slope environments under changing ocean conditions.  相似文献   

3.
Palaeoenvironmental change following deglaciation of the last British–Irish Ice Sheet on the continental shelf west of Ireland was investigated using multiproxy analyses of sediment and foraminifera data from nine sediment cores. Lithofacies associations record various depositional regimes across the shelf, which evolve from subglacial to postglacial conditions. Census data provide the first characterisation of benthic foraminifera populations across the continental shelf and multivariate analyses reveal three distinct biotopes. Biomineralization within these biotopes is restricted to ≤21 200 cal a bp by four radiocarbon ages. The transition from glacial to postglacial benthic foraminifera populations near the shelf break marks the establishment of productive, nutrient-rich, ice-distal conditions at ~20 900 cal a bp ; these conditions may also mark the start of favourable conditions for postglacial cold-water coral growth. Postglacial conditions on the inner shelf were not established until <14 500 cal a bp , suggesting glacial conditions west of Ireland may have persisted into the Bølling–Allerød Interstadial.  相似文献   

4.
Net fluxes of respiratory metabolites (O2, dissolved inorganic carbon (DIC), NH4 +, NO3 ?, and NO2 ?) across the sediment-water interface were measured using in-situ benthic incubation chambers in the area of intermittent seasonal hypoxia associated with the Mississippi River plume. Sulfate reduction was measured in sediments incubated with trace levels of35S-labeled sulfate. Heterotrophic remineralization, measured as nutrient regeneration, sediment community oxygen consumption (SOC), sulfate reduction, or DIC production, varied positively as a function of temperature. SOC was inversely related to oxygen concentration of the bottom water. The DIC fluxes were more than 2 times higher than SOC alone, under hypoxic conditions, suggesting that oxygen uptake alone cannot be used to estimate total community remineralization under conditions of low oxygen concentration in the water column. A carbon budget is constructed that compares sources, stocks, transformations, and sinks of carbon in the top meter of sediment. A comparison of remineralization processes within the sediments implicates sulfate reduction as most important, followed by aerobic respiration and denitrification. Bacteria accounted for more than 90% of the total community biomass, compared to the metazoan invertebrates, due presumably to hypoxic stress.  相似文献   

5.
南海北部陆架中全新世沉积记录及古环境意义   总被引:2,自引:1,他引:1  
 通过分析珠江口外陆架C069孔沉积柱样的粒度、黏土矿物、主量元素及底栖有孔虫,来研究南海北部中全新世晚期古环境演化。4.2 ka前为全新世大暖期后期,气候湿润,珠江口外陆架受大量的珠江淡水影响,导致C069孔位置的水动力条件较强,形成下段粒度较粗的碎屑沉积物,高岭石含量较高,低的MgO/Al2O3比值,以及受冲淡水影响形成的底栖有孔虫。由于受4.2 ka的极冷事件的影响,C069孔上段的沉积环境受珠江冲淡水影响减小,水动力条件减弱,沉积物粒度变细,高岭石含量降低,MgO/Al2O3比值增大,形成正常浅水环境的底栖有孔虫。4.2 ka以后,台湾来源物质的贡献增多,导致沉积物中伊利石和绿泥石的含量增多,伊利石结晶度和化学指数值都明显变小。  相似文献   

6.
River discharge of Ob and Yenisei to the Kara Sea is highly variable on seasonal and interannual time scales. River water dominates the shallow bottom water near the river mouths, making it warmer and less saline but seasonally and interannually more changeable than bottom water on the deeper shelf. This hydrographic pattern shows up in measurements and modelling, and in stable isotope records (δ18O, δ13C) along the growth axis of bivalve shells and in multiple analyses of single benthic foraminiferal shells. Average isotope ratios increase, but sample-internal variability decreases with water depth and distance from river mouths. However, isotope records of bivalves and foraminifera of a sediment core from a former submarine channel of Yenisei River reveal a different pattern. The retreat of the river mouth from this site due to early Holocene sea level rise led to increasing average isotope values up core, but not to the expected decrease of the in-sample isotope variability. Southward advection of cold saline water along the palaeo-river channel probably obscured the hydrographic variability during the early Holocene. Later, when sediment filled the channel, the hydrographic variability at the core location remained low, because the shallowing proceeded synchronously with the retreat of the river mouth.  相似文献   

7.
Holocene changes in the benthic and planktic foraminiferal fauna (>63 µm) from a marine sediment core (ARC‐3 Canadian Arctic Archipelago, 74° 16.050′ N, 91° 06.380′ W, water depth 347 m) show that significant environmental and palaeoceanographic variations occurred during the last 10 ka. Foraminiferal assemblages are restricted to the ca. 4.5–10 ka interval as younger samples are mostly barren of foraminifera due to intense carbonate dissolution after ca. 4.5 ka. Foraminiferal assemblages in the ca. 4.5–10 ka interval are dominated by the benthic species Islandiella helenae and Cassidulina reniforme (57% of total), with Elphidium clavatum, Cibicides lobatulus and Buccella frigida also being common in this interval. The dominance of these species indicates a seasonal sea ice regime which is consistent with the occurrence of the sea ice diatom‐derived organic geochemical biomarker IP25 throughout the core. The abundances of C. reniforme and E. clavatum decline upcore; consistent with more frequent mixing of the Barrow Strait water column during the early Holocene. It is likely that the influence of CO2‐rich Arctic surface water masses have caused an increase in bottom water corrosivity after ca. 8.5 ka, and dissolution has been further enhanced by sea ice‐related processes after ca. 6 ka, concomitant with increased IP25 fluxes. Dissolution is strongest when IP25 fluxes are highest, suggesting a link between the sea ice and benthic systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Deep-sea benthic foraminifera are an important and widely used marine proxy to understand paleoceanographic and paleoclimatic changes on regional and global scales, owing to their sensitivity to oceanic and climatic turnovers. Some species of benthic foraminifera are sensitive to changes in water mass properties whereas others are sensitive to organic fluxes and deep-sea oxygenation. Benthic faunal diversity has been found closely linked to food web, bottom water oxygen levels, and substrate and water mass stability. The present study is aimed at analyzing species diversity trends in benthic foraminifera and their linkages with Indian monsoon variability during the Neogene. Species diversity of benthic foraminifera is examined in terms of number of species (S), information function (H), equitability (E) and Sanders’ rarefied values, which were combined with relative abundances of high and low productivity benthic foraminifera at Ocean Drilling Program Hole 730A, Oman margin, western Arabian Sea. The Oman margin offers the best opportunity to understand monsoon-driven changes in benthic diversity since summer monsoon winds have greater impact on the study area. The species diversity was higher during the early Miocene Climatic Optimum (~17.2–16.4 Ma) followed by a decrease during 16.4–13 Ma coinciding with a major increase in Antarctic ice volume and increased formation of Antarctic Bottom Water. All the diversity parameters show an increase during 13–11.6 Ma, a gradual decrease during 11.6–9 Ma and then an increase with a maximum at 7 Ma. Thereafter the values show little change until 1.2 Ma when all the parameters abruptly decrease. The benthic foraminiferal populations and diversity at Hole 730A were mainly driven by the Indian monsoon, and polar waters might have played a minor or no role since early Neogene period as the Arabian Sea is an enclosed basin.  相似文献   

9.
全球变暖和人为活动不断加剧海洋低氧环境发生的频率和范围,低氧对全球海洋底栖生物群落结构造成重大影响。底栖有孔虫能够广泛适应生存在各种海洋低氧环境中,是极少数能适应低氧环境的真核生物之一,底栖有孔虫对低氧环境的响应及适应机制研究是海洋研究领域的前沿和热点话题,至今仍存在很多谜团。本文总结了不同海洋低氧环境活体底栖有孔虫分布特征、活体底栖有孔虫对人为诱导低氧环境的响应、低氧环境下底栖有孔虫外壳化学组成特征、低氧环境下底栖有孔虫的生存机理,期望为后续推进海洋低氧环境下底栖有孔虫相关研究进一步开展提供参考和借鉴。底栖有孔虫作为古海洋环境重建的重要工具,对我们了解全球海洋低氧环境的历史演化进程具有非常重要的意义。展望未来我们需要进一步加强有孔虫细胞生理学和分子生物学对低氧环境的适应机制研究,从系统发生学上认识真核生物对低氧环境适应的历史演化进程,为利用有孔虫作为工具更好地重建和预测海洋低氧环境变化提供理论依据。  相似文献   

10.
Shelf sediments from near the mouth of the Mississippi River were collected and analyzed to examine whether records of the consequences of anthropogenic nutrient loading are preserved. Cores representing approximately 100 yr of accumulation have increasing concentrations of organic matter over this period, indicating increased accumulation of organic carbon, rapid early diagenesis, or a combination of these processes. Stable carbon isotopes and organic tracers show that virtually all of this increase is of marine origin. Evidence from two cores near the river mouth, one within the region of chronic seasonal hypoxia and one nearby but outside the hypoxic region, indicate that changes consistent with increased productivity began by approximately the mid-1950s when the inorganic carbon in benthic forams rapidly became isotopically lighter at both stations. Beginning in the mid-1960s, the accumulation of organic matter, organic δ13C, and δ15N all show large changes in a direction consistent with increased productivity. This last period coincides with a doubling of the load of nutrients from the Mississippi River, which levelled off in the mid-1980s. These data support the hypothesis that anthropogenic nutrient loading has had a significant impact on the Louisiana shelf.  相似文献   

11.
Seasonal hypoxia [dissolved oxygen (DO)?≤?2 mg?l?1] occurs over large regions of the northwestern Gulf of Mexico continental shelf during the summer months (June–August) as a result of nutrient enrichment from the Mississippi–Atchafalaya River system. We characterized the community structure of mobile fishes and invertebrates (i.e., nekton) in and around the hypoxic zone using 3 years of bottom trawl and hydrographic data. Species richness and total abundance were lowest in anoxic waters (DO?≤?1 mg?l?1) and increased at intermediate DO levels (2–4 mg?l?1). Species were primarily structured as a benthic assemblage dominated by Atlantic croaker (Micropogonias undulatus) and sand and silver seatrout (Cynoscion spp.), and a pelagic assemblage dominated by Atlantic bumper (Chloroscombrus chrysurus). Of the environmental variables examined, bottom DO and distance to the edge of the hypoxic zone were most strongly correlated with assemblage structure, while temperature and depth were important in some years. Hypoxia altered the spatial distribution of both assemblages, but these effects were more severe for the benthic assemblage than for the pelagic assemblage. Brown shrimp, the primary target of the commercial shrimp trawl fishery during the summer, occurred in both assemblages, but was more abundant within the benthic assemblage. Given the similarity of the demersal nekton community described here to that taken as bycatch in the shrimp fishery, our results suggest that hypoxia-induced changes in spatial dynamics have the potential to influence harvest and bycatch interactions in and around the Gulf hypoxic zone.  相似文献   

12.
Holocene high-resolution cores from the margin of the Arctic Ocean are rare. Core P189AR-P45 collected in 405-m water depth on the Beaufort Sea slope, west of the Mackenzie River delta (70°33.03′N and 141°52.08′W), is in close vertical proximity to the present-day upper limit of modified Atlantic water. The 5.11-m core spans the interval between ∼6800 and 10,400 14C yr B.P. (with an 800-yr ocean reservoir correction). The sediment is primarily silty clay with an average grain-size of 9 φ. The chronology is constrained by seven radiocarbon dates. The rate of sediment accumulation averaged 1.35 mm/yr. Stable isotopic data (δ18O and δ13C) were obtained on the polar planktonic foraminifera Neogloboquadrina pachyderma (s) and the benthic infaunal species Cassidulina neoteretis. A distinct low-δ18O event is captured in both the benthic and planktonic data at ∼10,000 14C yr B.P.—probably recording the glacial Lake Agassiz outburst flood associated with the North Atlantic preboreal cold event. The benthic foraminifera are dominated in the earliest Holocene by C. neoteretis, a species associated with modified Atlantic water masses. This species decreases toward the core top with a marked environmental reversal occurring ∼7800 14C yr B.P., possibly coincident with the northern hemisphere 8200 cal yr B.P. cold event.  相似文献   

13.
对南海北部大洋钻探184航次1146站晚上新世以来底栖有孔虫属种组合的Q型因子分析, 发现底栖有孔虫组合以2.1Ma, 1.5Ma和0.7Ma为界, 分为Stilostomella-Globocassidulina subglobosa-Nodogenerina, Bulimina alazanensis, Uvigerina perigrina和Melonis barleeanus-Globobulimina affinis-Bulimina aculeata4个组合.结合底层水溶解氧含量和浮游、底栖有孔虫碳同位素分析, 认为底栖有孔虫组合的变化是南海底层水影响所致, 以及南海北部表层和底层海水营养盐含量变化的共同结果.   相似文献   

14.
Changes in the concentrations of atmospheric greenhouse gases are an important part of the global climate forcing. The hypothesis that benthic foraminifera are useful proxies of local methane emission from the seafloor has been verified on sediment cores by numerous studies. The calcium carbonate (CaCO3) content and the high-resolution carbon and oxygen isotope composition of the benthic foraminifera from the core 08CF7, from the northeastern Shenhu gas hydrate drilling area in the Baiyun Sag of the northern South China Sea were analyzed, and the benthic foraminifera’s evidence for methane release from gas hydrate decomposition are presented here for the first time. Two rapid obvious carbon isotope negative excursions were observed in the oxygen isotope stage boundaries 5d/5c and 6/5e (penultimate deglaciation, about 130 ka) of the cold-to-warm climatic transition period. The largest negative value of δ13C is about ?2.95 ‰, and the whole change of carbon and oxygen isotope is strikingly similar and is in consonance with the atmospheric methane concentration recorded by the Vostok ice core and the carbon isotopic record from Lake Baikal. Combining these results with the analysis of the geological conditions of the study area and the fact that gas hydrate exists in the surrounding area, it can be concluded that the carbon isotope negative excursions of the benthic foraminifera in the northern South China Sea are associated with methane release from gas hydrate decomposition due to deglacial climate warming. By recording the episodes of massive gas hydrate decomposition closely linked with the northern hemisphere temperatures during major warming periods, the new δ13C record from the Baiyun Sag provides further evidence for the potential impact of gas hydrate reservoir on rapid deglacial rises of atmospheric methane levels.  相似文献   

15.
Radiocarbon stratigraphy is an essential tool for high resolution paleoceanographic studies. Age models based on radiocarbon ages of foraminifera are commonly applied to a wide range of geochemical studies, including the investigation of temporal leads and lags. The critical assumption is that temporal coupling between foraminifera and other sediment constituents, including specific molecular organic compounds (biomarkers) of marine phytoplankton, e.g. alkenones, is maintained in the sediments.To test this critical assumption in the Benguela upwelling area, we have determined radiocarbon ages of total C37-C39 alkenones in 20 samples from two gravity cores and three multicorer cores. The cores were retrieved from the continental shelf and slope off Namibia, and samples were taken from Holocene, deglacial and Last Glacial Maximum core sections. The alkenone radiocarbon ages were compared to those of planktic foraminifera, total organic carbon, fatty acids and fine grained carbonates from the same samples. Interestingly, the ages of alkenones were 1000 to 4500 yr older than those of foraminifera in all samples.Such age differences may be the result of different processes: Bioturbation associated with grain size effects, lateral advection of (recycled) material and redeposition of sediment on upper continental slopes due to currents or tidal movement are examples for such processes.Based on the results of this study, the age offsets between foraminifera and alkenones in sediments from the upper continental slope off Namibia most probably do not result from particle-selective bioturbation processes. Resuspension of organic particles in response to tidal movement of bottom waters with velocities up to 25 cm/s recorded near the core sites is the more likely explanation.Our results imply that age control established using radiocarbon measurements of foraminifera may be inadequate for the interpretation of alkenone-based proxy data. Observed temporal leads and lags between foraminifera based data and data derived from alkenone measurements may therefore be secondary signals, i.e. the result of processes associated with particle settling and biological activity.  相似文献   

16.
This study examines benthic foraminifera (>63 μm) both qualitatively and quantitatively, from 19 closely spaced surficial sediment samples covering 30 to 200 m water depths across the shelf and upper continental slope off north Kerala (SW India). A total of 59 species are recorded. The major constituents of benthic foraminiferal assemblages in the study area are fursenkoinids, bolivinids, nonionids, rotaliids, elphidiids, buliminids, miliolids, gavilinellids, amphestiginids, bagginids, vaginulinids, uvigerinids and various agglutinated taxa. Cluster analysis using Bray Curtis similarity index defines four sample groups, each typified by a characteristic assemblage representing a biofacies. The major benthic foraminiferal biofacies identified are: Biofacies I, Fursenkoina-Nonion-Ammonia beccarii s.l. (30–40 m); Biofacies II, Fursenkoina-Nonion (40–55 m); Biofacies III, Bolivina robusta-Hanzawaia-Cancris-Amphistegina and miliolids (55–115 m) and Biofacies IV, Bolivina persiensis-Uvigerina-Bulimina-Fursenkoina and agglutinants (115–200 m). Relict foraminifera, most commonly represented by shallow-water benthic taxa are concentrated on the outer shelf. The relict assemblage appears to be a product of late Pleistocene low sea level. The foraminiferal biofacies have a good correspondence with the bathymetrically distributed three major lithofacies across the shelf and the upper continental slope. We studied the distribution pattern of individual taxa constituting the biofacies. The study demonstrates a relationship between the pattern of distribution of major benthic fauna and the sediment-size and organic carbon content across the inner shelf to upper slope. Additionally, certain taxa appear to be sensitive to various hydrographic parameters, such as, Bulimina marginata to temperature and Fursenkoina complanata and Uvigerina ex gr. U. semiornata to dissolved oxygen level.  相似文献   

17.
The concept of anthropogenic impact is extremely important to be considered while analysing the ecology of coast and shelf zones. For centuries, these zones have been the epicentres for various human activities, including urbanisation, construction of sea ports and harbours, development of natural reservoirs (including oil production and fishing), marine aquaculture, shipping, recreation and many others. Many of the activities in progress on both sides of the shoreline provide 50% or more of the gross State/UT (Union Tertiary) product for surrounding states. The data shows that land-based and atmospheric sources account for about two-thirds of the total contamination found in the marine environment, constituting 44 and 33%, respectively. The greatest anthropogenic pollution pressure undoubtedly falls on the shelf zones and coastal areas. To prove this theory, a total of 25 bottom sediment samples were collected within the depth zone of 5 fathoms from the South Andaman coastal fringe for sediment geochemistry studies and foraminiferal analysis. The samples were further analysed for heavy metal pollutants like Co, Cu, Mn, Pb and Zn. The study yielded 20 benthic foraminiferal species. Of these, five benthic species were living including Ammonia beccarii, Calcarine calcar, Elphidium crispum, Operculina complanata and Nonion deppresula. The presence of deformed specimens and the domination of Ammonia spp. are indications of a polluted environment. Sampled coral reefs had high abundances of Operculina spp. The highest counts of benthic microbiota were found in finer sediment. Species diversity is very limited along the coastal fringe of South Andaman Island in comparison with fauna from the coast of India. This first report of benthic foraminifera from South Andaman Island will allow us to assess future impacts of marine pollution because foraminiferal deformations are positively correlated to the concentrations of heavy metals (Cr, Cu, Mn, Pb and Zn).  相似文献   

18.
We update and reevaluate the scientific information on the distribution, history, and causes of continental shelf hypoxia that supports the 2001 Action Plan for Reducing, Mitigating, and Controlling Hypoxia in the Northern Gulf of Mexico (Mississippi River/Gulf of Mexico Watershed Nutrient Task Force 2001), incorporating data, publications, and research results produced since the 1999 integrated assessment. The metric of mid-summer hypoxic area on the LouisianaTexas shelf is an adequate and suitable measure for continued efforts to reduce nutrients loads from the Mississippi River and hypoxia in the northern Gulf of Mexico as outlined in the Action Plan. More frequent measurements of simple metrics (e.g., area and volume) from late spring through late summer would ensure that the metric is representative of the system in any given year and useful in a public discourse of conditions and causes. The long-term data on hypoxia, sources of nutrients, associated biological parameters, and paleoindicators continue to verify and strengthen the relationship between the nitratenitrogen load of the Mississippi River, the extent of hypoxia, and changes in the coastal ecosystem (eutrophication and worsening hypoxia). Multiple lines of evidence, some of them representing independent data sources, are consistent with the big picture pattern of increased eutrophication as a result of long-term nutrient increases that result in excess carbon production and accumulation and, ultimately, bottom water hypoxia. The additional findings arising since 1999 strengthen the science supporting the Action Plan that focuses on reducing nutrient loads, primarily nitrogen, through multiple actions to reduce the size of the hypoxic zone in the northern Gulf of Mexico.  相似文献   

19.
为探寻晚第四纪以来水合物分解事件在南海北部甲烷渗漏环境下有孔虫中的记录,对南海北部陆坡2个区块的沉积柱状样有孔虫碳氧同位素组成和测年分析发现,底栖有孔虫Uvigerina spp.碳同位素值为-2.12‰~-0.21‰,浮游有孔虫Globigerinoides ruber.氧同位素值为-3.11‰~-0.60‰,ZD3、ZS5 2个柱状样孔底年龄分别为26 616、64 090 a,对应了氧同位素Ⅲ、Ⅳ期末期,有孔虫碳同位素负偏的层位与氧同位素Ⅱ、Ⅳ期(冷期)层位相对应,负偏程度达到了-2‰,与布莱克海台和墨西哥湾等地区晚第四纪沉积层中有孔虫碳氧同位素组成相似。分析认为:研究区是典型的甲烷渗漏环境,该区在氧同位素Ⅱ、Ⅳ期,由于全球海平面下降,导致海底压力减小,天然气水合物分解释放,具轻碳同位素的大量甲烷释放进入海底溶解无机碳(DIC)池并记录在有孔虫壳体内,造成有孔虫碳同位素负偏;同时在有孔虫负偏层位黄铁矿和自生碳酸盐较发育,进一步证实了有孔虫碳同位素受甲烷影响较大,而海洋生产力的降低和早期成岩作用对有孔虫碳同位素负偏的影响较小。  相似文献   

20.
Assemblages of benthic foraminifera from one clastic succession in the Afales Basin (Ithaki Island, western Greece) were investigated to reconstruct palaeoenvironmental conditions during the Oligocene. The section consists of alternating hemipelagic marls and detrital deposits, designated as flysch-like beds, attributed to biostratigraphic Zones P20 and P21. Planktic percentages are mostly high (66–80%). Benthic foraminiferal assemblages comprise calcareous and agglutinated taxa (up to 15%). The prevalence of epifaunal foraminifera indicates good ventilation of the bottom water resulting from basin morphology, which enabled the undisturbed flow of water throughout the basin. Palaeodepth estimates imply bathyal deposition, from about 800 to 1200 m deep. The benthic foraminiferal fauna is of high diversity along the section, as is expected in deep marine environments. The abundances of the most common foraminiferal taxa (Cibicidoides spp., Oridorsalis umbonatus, Gyroidinoides spp., Stilostomella spp., Nodosariidae, Nuttallides umbonifera) are quite variable and imply generally oligotrophic to mesotrophic environmental conditions with variable organic flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号