首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Phytoplankton chlorophyll a concentration, biovolume, cell diameter, and species composition differed across the narrow, low salinity zone between 0.6‰ to 4‰ and may influence copepod food availability in the northern San Francisco Bay Estuary. The highest chlorophyll a concentrations (range 3.2–12.3 μg 1?1), widest cell diameters (>5 μm diam), highest diatom densities and highest production rates of >10 μm diam cells occurred at the landward edge of the salinity zone in April during a strong spring tide and May during a strong neap tide. Near optimum predator/prey ratios, large prey estimated spherical diameters, and high chlorophyll a concentrations suggest these phytoplankton communities provided good food quantity and quality for the most abundant copepods, Eurytemora affinis, Sinocalanus doerrii, and Pseudodiaptomus forbesi. At the center of the zone, chlorophyll a concentrations, diatom densities, and production rates of >10 μm diam cells were lower and cell diameters were smaller than upstream. Downstream transport was accompanied by accumulation of phytoplankton with depth and tide; maximum biomass occurred on spring tide. The lowest chlorophyll a concentrations (1.4–3.6 μg 1?) and consistently high densities (3,000–4,000 cells ml?1) of <5 μm diam cells occurred at the seaward edge of the zone, where the green alga Nannochloris spp. and the bluegreen alga Synechococcus spp. were the most abundant phytoplankton. Low chlorophyll a concentrations and production rates of >10 μm diam cells, small prey estimated spherical diameters, and high predator/prey ratios suggested the seaward edge of the zone had poor phytoplankton food for copepodids and adult copepods. The seaward decrease in phytoplankton chlorophyll a concentration and cell diameter and shift in species composition in the low salinity zone were probably a function of an estuary-wide decrease in chlorophyll a concentration, cell diameter, and diatom density since the early 1980s that was enhanced in the low salinity zone by clam herbivory after 1987. *** DIRECT SUPPORT *** A01BY090 00008  相似文献   

2.
The exotic freshwater clam speciesCorbicula fluminea (Asiatic clam) was first reported in the tidal freshwater Potomac estuary near Washington, D.C., in 1977, and was found in benthic surveys, conducted in 1978, 1982, 1984, 1986, and 1992. In 1981 a tripling of water clarity was reported in the region of the clam beds, followed in 1983 by reapperance of submerged aquatic vegetation (SAV) absent for 50 yr. Submerged aquatic vegetation (SAV) has been surveyed and mapped over the entire Potomac estuary region in almost every year from 1976 to 1993 by aerial photography, as part of the United States Environmental Protection Agency's Chesapeake Bay program. Fish surveys in 1986 found populations increased up to 7× in beds of SAV. Starting in 1984, the Washington, D.C. Christmas Bird Census reported significant increases in several aquatic bird populations both nonmigratory and migratory. An extensive benthic survey in September 1986 estimated a spring-summer population of 8.7×106 kg Asiatic clams (wet weight including shell) in the 5-km region of the Potomac below Washington, D.C. This population was calculated as having the capacity to filter one-third to all of the water in this region of the estuary daily, depending on river flow. The 1986 clam population was smaller than that of 1984 and the 1992 population was 25% of that in 1986. Since 1986, SAV acreage has been decreasing in this area of the Potomac. Aquatic bird populations have declined. Yearly nuisance algae (Microcystis) blooms, which had been absent since 1983, reappeared in 1993. This paper presents evidence to support the theory the invasive Asiatic clam population in the 10 km below Washington, D.C., was responsible for SAV resurgence through filtration affecting turbidity. It suggests the clam populations triggered system-level changes in biota, including increase and decrease in local Potomac estuary populations (SAV, bird, fish, algae) over 10 yr, from 1983 to 1993. Major changes in the Asiatic clam population took place approximately 2 yr before parallel changes in SAV acreage were observed.  相似文献   

3.
Species of submerged aquatic vegetation (SAV) are frequently used in the management of estuarine systems to set restoration goals, nutrient load reduction goals, and water quality targets. As human need for water increases, the amount of freshwater required by estuaries has become an increasingly important issue. While the, science of establishing the freshwater needs of estuaries is not well developed, recent attempts have emphasized the freshwater requirements of fisheries. We evaluate the hypothesis that SAV can be used to establish freshwater inflow needs. Salinity tolerance data from laboratory and field studies of SAV in the Caloosahatchee estuary, Florida, are used to estimate a minimum flow required to maintain the salt-tolerant freshwater species,Vallisneria americana, at the head of the estuary and a maximum flow required to prevent mortality, of the marine speciesHalodule wrightii at its mouth. ForV. americana, laboratory experiments showed that little or no growth occurred between 10‰ and 15‰ In the field, lower shoot densities (<400 shoots m?2) were associated with salinities greater than 10‰. Results forH. wrightii were more variable than forV. americana. Laboratory experiments indicated that mortality could occur at salinities <6‰, with little growth occurring between 6‰ and 12‰. Field data indicated that higher blade densities (>600 blades m?2) tend to occur at salinities greater than 12‰ Relationships between salinity in the estuary and discharge from the Caloosahatchee River indicated that flows>8.5 m3 s?1 would produce tolerable salinity (<10‰) forV. americana and flows<89 m3 s?1 would avoid lethal salinities (<6‰) forH. wrightii.  相似文献   

4.
Canary rockfish are one of the commercially important rockfish species along the US Pacific coast. Yet little is known about their life history and stock structure. In this study 120 canary rockfish otoliths were collected from waters off the Washington and Oregon coast and subjected to stable O and C isotope (δ18O and δ13C) analyses. One powder sample was taken from the nucleus of each otolith, and the other from the 5th annual ring. Data from otolith nuclei can provide information on the natal sources and spawning stock separations, while data from age-1 to age-5 may indicate changes in fish habitat. Overall the δ18O values in otoliths of canary rockfish ranged from −0.2 to +1.7‰, whereas δ13C values of the same samples ranged from −5.4 to −1.4‰. The isotopic data and correlation of δ18O versus δ13C did not show clear separation between Washington and Oregon samples, similar to those for a previous study on yelloweye rockfish from the same region. These results suggest that canary rockfish may belong to a single spawning stock or population along the Washington and Oregon coast.  相似文献   

5.
Transition and heavy metals within the calcified otoliths of estuarine fishes may represent valuable tracers of environmental exposures, allowing inferences on natality, habitat use, and exposure to pollution. Accurate measurement of very low concentrations of these metals in otoliths by inductively coupled plasma mass spectrometry (ICP-MS) is often precluded by the interferences of predominant calcium matrix. We coupled a solid phase extraction procedure to an ICP-MS instrument to overcome the matrix problems and improve the limits of detection. To test this novel application and the utility of otolith transition and heavy metals as tracers of habitat use, otoliths of American eel (Anguilla rostrata) captured from 6 locations (George Washington Bridge, Haverstraw, Newburgh, Kingston, Athens, and Albany) throughout the Hudson River estuary were analyzed for site specific differences expected due to varying environmental exposure. Several trace elements, including Al, Bi, Cd, Co, Cu, Ga, Mn, Ni, Pb, V, and Zn, were selectively extracted from otolith solutions and preconcentrated on a microcolumn of chelating resin. The concentrations of all elements inA. rostrata otoliths were above the limits of detection that ranged from 0.2 ng g?1 for Co to 7 ng g?1 for Zn. Differences in the elemental composition of the otoliths among the groups were significant indicating different levels of exposure to environmental conditions. Discriminant analysis yielded an overall location classification rate of 78%. Al, Bi, Cd, Mn, Ni, and V contributed most to the discriminant function. Samples collected at George Washington Bridge showed 100% discrimination from other locations, and higher levels of many transition and heavy metals, consistent with higher exposure to these metals in the most polluted region of the Hudson River estuary.  相似文献   

6.
Stratification and bottom-water hypoxia in the Pamlico River estuary   总被引:1,自引:0,他引:1  
Relationships among bottom-water dissolved oxygen (DO), vertical stratification, and the factors responsible for stratification-destratification in this shallow, low tidal-energy estuary were studied using a 15-yr set of biweekly measurements, along with some recent continuous-monitoring data. Hypoxia develops only when there is both vertical water-column stratification and warm water temperature (>15°C). In July, 75% of the DO readings were <5 mg 1?1, and one-third were <1 mg 1?1. Severe hypoxia occurs more frequently in the upper half of the estuary than near the mouth. Both the time series data and correlation analysis results indicate that stratification events and DO levels are tightly coupled with variations in freshwater discharge and wind stress. Stratification can form or disappear in a matter of hours, and episodes lasting from one to several days seem to be common. Estimated summertime respiration rates in the water and sediments are sufficient to produce hypoxia if the water is mixed only every 6–12 d. There has been no trend toward lower bottom water DO in the Pamlico River Estuary over the past 15 yr. *** DIRECT SUPPORT *** A01BY059 00002  相似文献   

7.
Growth, mortality, and production rates for spot,Leiostomus xanthurus Lacépede, were studied from January 1977 through August 1978 in tidal creeks of the Cape Fear estuary, North Carolina. Winter growth rates were low, averaging 0.14 and 0.16 mm per day in 1977 and 1978, respectively. Mortality rates were significantly higher in polyhaline marshes during 1977, however, similar rates were observed in oligohaline marshes in 1978. The difference is believed due to higher freshwater flows experienced in 1978, which apparently increased mortality rates upriver. Pooled monthly production estimates for all sampling sites combined yielded a value of 0.17 g per m2 (257 cal per m2). This figure is similar to those reported for spot collected in seagrass meadows in the vicinity of the Cape Fear estuary (Adams 1976). Because spot migrate offshore in the fall, this production also represents potential export of energy to the marine environment in the form of living biomass.  相似文献   

8.
The distribution of macroinfauna was quantified in subtidal, soft-bottom habitats, extending from the estuarine mouth to the tidal head of the Gamtoos—a small, shallow, temperate estuary situated on the south coast of South Africa. Sampling covered the full salinity gradient from fresh to marine waters, and all sediment types from marine sands to fluvial silts. A total of 35 taxa was recorded, of which 22 occurred throughout the year. Species richness and diversity declined from the seawater-dominated mouth region toward the fresh water section at the tidal head of the estuary. Sediment type generally bore no clear relation to biotic diversity. A marked drop in salinity between winter and summer sample series (Δ 0.2‰ to 24‰) coincided with a reduction of mean macrofaunal density by 70%, a more seaward relocation, and a compression of axial ranges of most taxa. Numerical classification and ordination of faunistically similar regions and of co-occurring species delineated four habitat zones along the longitudinal axis of the estuary which harbour four distinct macrofaunal assemblages: 1) A tidal inlet area with salinities close to seawater; clean, coarse, marine sands, rich in CaCO3 harbour a stenohaline fauna normally found on adjacent, marine sandy beaches. 2) In the lower reaches, where fine, fluvial silts of high organic content prevail, euryhaline polychaetes dominate the macrozoobenthic community; bottom salinities in this zone seldom dropped below 25‰ 3) The middle reaches, characterized by oligohaline- to polyhaline waters, stretch over sandy sediments of intermediate carbonate, silt, and organic fractions; the fauna comprises typical estuarine forms, which occurred throughout most of the estuary except at its seaward and landward limits. 4) The upper reaches encompass the limnetic waters near the tidal head of the estuary with sediments in this zone being composed mostly of coarse, clean sands, low in CaCO3; the macrobenthos in this region is dominated by taxa of freshwater origin, which generally do not penetrate seaward beyond the oligohaline waters, and by exceptionally euryhaline estuarine species. Salinity appears as the main factor in controlling faunal assemblages at both extremes of the estuarine gradient (i.e., tidal inlet and head), whereas sediment type delineates between communities in the mesohaline to polyhaline reaches. Axial (i.e., from tidal inlet to tidal head of the estuary) zonation patterns of macroinfauna broadly matched those of mesozooplankton and fishes, supporting the notion of a general structure underlying species distribution patterns in the Gamtoos estuary.  相似文献   

9.
Seasonal patterns of aboveground and belowground biomass, leaf chlorophyll (chl) content, and in situ differences in photosynthetic parameters were examined in the shoal grass Halodule wrightii along an estuarine gradient in the western Gulf of Mexico. Continuous measurements of biomass were collected over a 5-yr period (1989–1994) with respect to several abiotic factors in three estuarine systems that were characterized by significant differences in salinity and ambient dissolved inorganic nitrogen (DIN; NO2 ?+NO3 ?) regimes that ranged from 5–25‰ (0–80 μM DIN) in the Guadalupe estuary to 35–55‰ (0–9 μM DIN) in the upper Laguna Madre, Photosynthesis versus irradiance (P vs. I) parameters, measured from December 1989 to April 1991, showed no significant differences among the three sites, and there were no significant differences in leaf chlorophyll content and chl a:b ratios among sites over the entire 5-yr period. Saturation irradiance in Halodule wrightii is estimated at 319 μmoles photons m?2 s?1 based on measurements collected at the three sites over a 2-yr period. No strong seasonal variations were observed in total plant biomass, but root:shoot ratios (RSR) showed a clear pattern of maximum RSR values in winter and minimum values in summer. There were no significant differences in RSR among sites, and no consistent correlations could be established between plant parameters and sediment porewater NH4 +, salinity, or temperature. Sediment porewater NH4 + values generally ranged from 50 μM to 400 μM (average 130–150 μM) but could not be correlated with significant differences in sediment composition between the sites. The high productivity of Halodule wrightii under a variety of light, nutrient, and salinity conditions explains its ubiquitous distribution and opportunistic strategy as a colonizing species. However, the persistence of a dense algal bloom in Laguna Madre coincident with low DIN levels (<5 μM) contradicts previously accepted relationships on nutrient stimulation of algal growth, and provides strong evidence that water quality parameters for estuarine seagrasses are decidedly estuarine-specific. Consequently, a knowledge of the long-term history of estuarine systems is critical to habitat managers, who are required to establish minimum water quality criteria for the protection of submerged aquatic vegetation in estuarine systems. *** DIRECT SUPPORT *** A01BY074 00028  相似文献   

10.
Benthic metabolism and nutrient exchange across the sediment-water interface were examined over an annual cycle at four sites along a freshwater to marine transect in the Parker River-Plum Island Sound estuary in northeastern Massachusetts, U.S. Sediment organic carbon content was highest at the freshwater site (10.3%) and decreased along the salinity gradient to 0.2% in the sandy sediments at the marine end of the estuary. C:N ratios were highest in the mid estuary (23:1) and lowest near the sea (11:1). Chlorophyll a in the surface sediments was high along the entire length of the estuary (39–57 mg chlorophyll a m−2) but especially so in the sandy marine sediments (172 mg chlorophyll a m−2). Chlorophyll a to phaeophytin ratios suggested most chlorophyll is detrital, except at the sandy marine site. Porewater sulfide values varied seasonally and between sites, reflecting both changes in sulfate availability as overlying water salinity changed and sediment metabolism. Patterns of sediment redox potential followed those of sulfide. Porewater profiles of inorganic N and P reflected strong seasonal patterns in remineralization, accumulation, and release. Highest porewater NH4 + values were found in upper and mid estuarine sediments, occasionally exceeding 1 mM N. Porewater nitrate was frequently absent, except in the sandy marine sediments where concentrations of 8 μM were often observed. Annual average respiration was lowest at the marine site (13 mmol O2 m−2 d−1 and 21 mmol TCO2 m−2 d−1) and highest in the mid estuary (130 mmol O2 m−2 d−1 and 170 mmol TCO2 m−2 d−1) where clam densities were also high. N2O and CH4 fluxes were low at all stations throughout the year: Over the course, of a year, sediments varied from being sources to sinks of dissolved organic C and N, with the overall spatial pattern related closely to sediment organic content. There was little correlation between PO4 3− flux and metabolism, which we attribute to geochemical processes. At the two sites having the lowest salinities, PO4 3− flux was directed into the sediments. On average, between 22% and 32% of total system metabolism was attributable to the benthos. The mid estuary site was an exception, as benthic metabolism accounted for 95% of the total, which is attributable to high densities of filter-feeding clams. Benthic remineralization supplied from less than 1% to over 190% of the N requirements and 0% to 21% of the P requirements of primary producers in this system. Estimates of denitrification calculated from stoichiometry of C and N fluxes ranged from 0% for the upper and mid estuary site to 35% for the freshwater site to 100% of sediment organic N remineralization at the marine site. We hypothesize that low values in the upper and mid estuary are attributable to enhanced NH4 + fluxes during summer due to desorption of exchangeable ammonium from rising porewater salinity. NH4 + desorption during summer may be a mechanism that maintains high rates of pelagic primary production at a time of low inorganic N inputs from the watershed.  相似文献   

11.
Six holes were drilled to depths of 30–69 m in the shallow lagoon of Aitutaki in the southern Cook Islands. One hole encountered pervasively dolomitized reef limestones at 36 m subbottom depth, which extended to the base of the drilled section at 69·3 m. This hole was drilled near the inner edge of the present barrier reef flat on the flank of a seismically defined subsurface ridge. Both the morphology and biofacies indicate that this ridge may represent an outer reef crest. Mineralogy, porosity and cementation change in concert downhole through three zones. Zone 1, 0–9 m, is composed of primary skeletal aragonite and calcite with minor void-filling aragonite and magnesian calcite cement of marine phreatic origin. Zone 2, 9–36 m, is composed of replacement calcite and calcite cement infilling intergranular, intragranular, mouldic and vuggy porosity. Stable isotopes (mean δ18O=—5·4‰ PDB for carbonate; δD =—50‰ SMOW for fluid inclusions) support the petrographic evidence indicating that sparry calcite cements formed in predominantly freshwater. Carbon isotope values of —4·0 to —11·0‰ for calcite indicate that organic matter and seawater were the sources of carbon. Zone 3, 36–69·3 m, is composed of replacement dolostone, consisting of protodolomite with, on average, 7 mol% excess CaCO3 and broad and weak ordering X-ray reflections at 2·41 and 2·54 A. The fine-scale replacement of skeletal grains and freshwater void-filling cements by dolomite did not significantly reduce porosity. Stable isotopes (mean δ18O=+2·6‰0 PDB for dolomite; maximum δD =—27‰ SMOW for fluid inclusions) and chemical composition indicate that the dolomite probably formed from seawater, although formation in the lower part of a mixed freshwater-seawater zone, with up to 40% freshwater contribution, cannot be completely ruled out. The carbon (δ13C=2·7‰) and magnesium were derived from seawater. Low-temperature hydrothermal iron hydroxides and associated transition metals occur in void space in several narrow stratigraphic intervals in the limestone section that was replaced by dolomite. The entire section of dolomite is also enriched in these transition metals. The metals dispersed throughout the dolostone section were introduced at the time of dolomitization by a different and later episode of hydrothermal circulation than the one(s) that produced the localized deposits near the base of the section. The primary reef framework is considered to have been deposited during several highstands of sea level. Following partial to local recrystallization of the limestone, a single episode of dolomitization occurred. Both tidal and thermal pumping drove large quantities of seawater through the porous rocks and perhaps maintained a wide mixing zone. However, the isotopic, geochemical and petrographic data do not clearly indicate the extent of seawater mixing.  相似文献   

12.
The effect of temperature and salinity on numbers of luminescent bacteria present in waters of the Mystic (Conn.) River estuary was evaluated. Counts decreased with decreasing salinity; none were detected at freshwater stations. A population maximum of 35 per ml was noted at the highest salinity station (30±2‰). Highest counts were observed during winter and spring and lowest numbers occurred during summer and fall months. Isolates (111) were identified and compared with previously-described luminescent bacteria; i.e.,Beneckea (Vibrio) harveyi, Photobacterium (V.) fischeri, P. phosphoreum, andP. leiognathi. All species were isolated but distinct seasonal differences were noted.P. (V.) fischeri andB. (V.) harveyi represented 93% of the luminous population on an annual basis. Only the former was found during the period December through March (highest count 7 per ml) whileB. (V.) harveyi was the dominant species noted between May and October (maximum count 11 per ml).P. leiognathi andP. phosphoreum were found only during July and August as 7% of the total luminous population. All isolates grew at NaCl concentrations between 6 and 30‰; none grew below 6‰  相似文献   

13.
Five stations on the lower Saint John River, a complex multibasin estuary, were sampled semiquantitatively for zooplankton at biweekly intervals for one year, and qualitatively over a 4-year period. Planktonic Crustacea were dominated by the true estuarine copepods,Acartia tonsa andEurytemora affinis and the euryhaline marine copepodsOithona similis andPseudocalanus minutus. Atypical estuarine forms, confined to a lower fiord-like basin with salinity of 20‰, were the amphipod,Parathemisto abyssorum and the mysidErythrops erythrophthalma. River flows were highly variable from year to year. Certain basins function as lakes in some years and estuaries in other years, causing extreme zooplankton community fluctuations, and succession patterns dependent on salinity rather than season. On occasion freshwater zooplankters maintained viable populations at unusually high salinities (ca. 5‰). Vertical and horizontal distributions of zooplankters indicate that the estuary in fact comprises two systems: a true estuary in the upper reaches and the surface waters at the lower end, and a fiord in a subsidiary basin in the lower end.  相似文献   

14.
Particulate organic carbon (POC), dissolved organic carbon (DOC), and plant pigments (chlorophylls and carotenoids) were measured approximately bimonthly from March 1992 to October 1993 in the Sabine-Neches estuary (Sabine Lake region), located on the Texas-Louisiana border. High freshwater inflow into this shallow turbid estuary results in the shortest hydraulic residence time (ca. 7 d) of all Texas estuaries (Baskaran et al. in press). Annual averages of chlorophyll-a (3.0 μg l?1) and particulate organic carbon (1.1 mg l?1) in the water column were extremely low in comparison to other shallow estuaries. The highest chlorophyll-a concentrations were observed in October 1993, in the mid and lower regions of the estuary, during the lowest river discharge. Zeaxanthin and fucoxanthin concentrations suggested that much of the chlorophyll-a during this low flow period was represented by cyanobacteria and diatoms that entered from the Gulf of Mexico. The range of DOC concentrations was generally high (4.4–20.9 mg l?1) and were significantly correlated with POC, but not with chlorophyll-a concentrations. When total suspended particulate (TSP) concentrations were below 20 to 30 mg l?1, there were significant increases in %POC and %PON of the TSP. The unusually high POC: chlorophyll-a ratios (highest value of 1423) suggested that much of the POC contained low concentrations of chlorophyll-a that had degraded during transport from wetlands in the Sabine and Neches rivers. Based on these data, this estuary can be characterized as a predominantly heterotrophic system, with low light penetrance, short particle-residence times, high DOC, and low inputs from autochthonous carbon sources.  相似文献   

15.
The effectiveness of larval behavior in regulating transport between well-mixed, low-inflow estuaries and coastal waters in seasonally arid climates is poorly known. We determined the flux of an assemblage of benthic crustacean larvae relative to physical conditions between a shallow estuary and coastal waters on the upwelling coast of northern California (38°18′N, 123°03′W) from 29 to 31 March 2006. We detected larval behaviors that regulate transport in adjacent coastal waters and other estuaries for only two taxa in the low-inflow estuary, but they were apparent for taxa outside the estuary. Vertical mixing in the shallow estuary may have overwhelmed larvae of some species, or salinity fluctuations may have been too slight to cue tidal vertical migrations. Nevertheless, all larval stages of species that complete development in nearshore coastal waters were present in the estuary, because they remained low in the water column reducing seaward advection or they were readily exchanged between the estuary and open coast by tidal flows. Weak tidal flows and gravitational circulation at the head of the estuary reduced seaward transport during development for species that completed development nearshore, whereas larval release during nocturnal ebb tides enhanced seaward transport for species that develop offshore. Thus, nonselective tidal processes dominated larval transport for most species back and forth between the low-inflow estuary and open coastal waters, whereas in adjacent open coastal waters, larval behavior in the presence of wind-induced shear was more important in regulating migrations between adult and larval habitats along this upwelling coast.  相似文献   

16.
《Applied Geochemistry》2003,18(4):615-627
A study was conducted at the Fresh Kills landfill, Staten Island, New York to investigate the use of B and Li isotopes as tracers of mixing and flow in the groundwater environment. Four end-member waters are present at the Fresh Kills: freshwater, seawater, a geochemically distinct transitional groundwater (that occurs in the zone of mixing between seawater and freshwater) and landfill leachate. The δ11B and δ6Li values of end-member waters are distinct and have isotopic compositions that reflect the solute sources: freshwater δ11B∼+30‰, δ6Li∼−22‰; transition zone groundwaters δ11B∼+20‰, δ6Li∼−27‰; seawater δ11B+40 to +75‰, δ6Li−37 to−44‰; leachate δ11B∼+10‰ (δ6Li not determined). Those wells influenced by seawater exhibited a clear chemical mixing trend, with seawater contributions ranging from 3 to 85%. Well waters with a high percentage of seawater (>30%) had δ11B values that were within 1‰ of the seawater value (+40‰), whereas a trend of increasing δ11B values (+55 to +75‰) was observed for wells with a lower percentage of seawater (<30%). δ6Li values for well waters impacted by mixing with seawater ranged from−37 to−44‰, significantly more negative than pure seawater (−31‰). This deviation from the isotopic composition of seawater, for both δ11B and δ6Li values, represents non-conservative behavior and is likely the result of isotopic fractionation during ion exchange reactions. The wide range of δ11B and δ6Li values and the distinct isotopic compositions of end-member waters makes B and Li isotopes useful for recognizing solute sources, however isotopic fractionation may limit their use as simple tracers of groundwater flow and mixing.  相似文献   

17.
Bosten Lake is a mid-latitude lake with water mainly supplied by melting ice and snow in the Tianshan Mountains. The depositional environment of the lake is spatially not uniform due to the proximity of the major inlet and the single outlet in the western part of the lake. The analytical results show that the carbon and oxygen isotopic composition of recent lake sediments is related to this specific lacustrine depositional environment and to the resulting carbonate mineralogy. In the southwestern lake region between the Kaidu River inlet and the Kongqi River outlet, carbon isotope composition (δ13C) values of the carbonate sediment (?1‰ to ?2‰) have no relation to the oxygen isotope composition of the carbonate (δ18O) values (?7‰ to ?8‰), with both isotopes showing a low variability. The carbonate content is low (<20%). Carbonate minerals analyzed by X-ray diffraction are mainly composed of calcite, while aragonite was not recorded. The salinity of the lake water is low in the estuary region as a result of the Kaidu River inflow. In comparison, the carbon and oxygen isotope values are higher in the middle and eastern parts of the lake, with δ13C values between approximately +0.5‰ and +3‰, and δ18O values between ?1‰ and ?5‰. There is a moderate correlation between the stable oxygen and carbon isotopes, with a coefficient of correlation r of approximately 0.63. This implies that the lake water has a relatively short residence time. Carbonate minerals constitute calcite and aragonite in the middle and eastern region of the lake. Aragonite and Mg–calcite are formed at higher lake water salinity and temperatures, and larger evaporation effects. More saline lake water in the middle and eastern region of the lake and the enhanced isotopic equilibrium between water and atmospheric CO2 cause the correlating carbon and oxygen isotope values determined for aragonite and Mg–calcite. Evaporation and biological processes are the main reasons for the salinity and carbonate mineralogy influence of the surface-sediment carbonate in Bosten Lake. The lake water residence time and the CO2 exchange between the atmosphere and the water body control the carbon and oxygen isotope composition of the carbonate sediment. In addition, organic matter pollution and decomposition result in the abnormally low carbon isotope values of the lake surface-sediment carbonate.  相似文献   

18.
Late Miocene platform carbonates from Nijar, Spain, have been extensively dolomitized. Limestones are present in the most landward parts of the platform, in stratigraphically lower units and topographically highest outcrops, suggesting that dolomitizing fluids were derived from the adjacent Nijar Basin. The dolomite crystals range from <10 to ≈100 μm existing as both replacements and cements. Na, Cl and SO4 concentrations in the dolomites range from 200 to 1700 p.p.m., 250–650 p.p.m., and 600–7000 p.p.m., respectively, comparable with other Tertiary and modern brine dolomite values, and also overlapping values from mixing-zone dolomites. Sr concentrations range between 50 and 300 p.p.m., and the molar Sr/Ca ratios of dolomitizing fluids are estimated to range between 7× seawater brine to freshwater ratios. The δ18O and δ13C of the dolomites range from ?1·0 to +4·2‰ PDB, and ?4·0 to +2·0‰ PDB, respectively. 87Sr/86Sr values (0·70899–0·70928) of the dolomites range from late Miocene seawater to values greater than modern seawater. Mixtures of freshwater with seawater and evaporative brines probably precipitated the Nijar dolomites. Modelled covariations of molar Sr/Ca vs. δ18O and Na/Ca vs. δ18O from these mixtures are consistent with those of the proposed Nijar dolomitizing fluids. Complete or partial dolomite recrystallization is ruled out by well preserved CL zoning, nonstoichiometry and quantitative water–rock interaction modelling of covariations of Na vs. Sr and δ18O vs. δ13C. The possibility of multiple dolomitization events induced by evaporative brines, seawater and freshwater, respectively, is consistent with mineral-mineral mixing modelling. The basin-derived dolomitizing brines probably mixed with freshwater in the Nijar Basin or mixed with fresh groundwater in the platform, and were genetically related either to deposition of the Yesares gypsum or the Feos gypsum. Dolomitization occurred during either the middle Messinian or the early upper Messinian. Nijar dolomitization models may be applicable to dolomitization of other late Miocene platform carbonates of the western Mediterranean. Moreover, the Nijar models may offer an analogue for more ancient evaporite-absent platform carbonates fringing evaporite basins.  相似文献   

19.
20.
We investigated the occurrence of behaviors that maximize predator avoidance and seaward transport in estuarine decapod zoeae by collecting larvae from discrete depths in a partially mixed estuary, Willapa Bay, Washington, USA, and relating their abundance and vertical distribution to a suite of environmental variables. Abundances of first zoeae of Neotrypaea californiensis and Pinnotheridae were associated with tidal phase, diel phase, and water height. Both taxa were most abundant during ebb tides, and abundances increased with water height, suggesting behaviors that enhanced seaward transport. Additionally, N. californiensis were both shallower and more abundant at night, indicative of behaviors to avoid visual predators. Our results suggest that both tidal transport and predator avoidance are important and sometimes interactive selective forces shaping larval decapod behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号