首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrate and water quality parameters (temperature, salinity, dissolved oxygen, turbidity, and depth) were measured continuously with in situ NO3 analyzers and water quality sondes at two sites in Elkhorn Slough in Central California. The Main Channel site near the mouth of Elkhorn Slough was sampled from February to September 2001. Azevedo Pond, a shallow tidal pond bordering agricultural fields further inland, was sampled from December 1999 to July 2001. Nitrate concentrations were recorded hourly while salinity, temperature, depth, oxygen, and turbidity were recorded every 30 min. Nitrate concentrations at the Main Channel site ranged from 5 to 65 μM. The propagation of an internal wave carrying water from ≈100 m depth up the Monterey Submarine Canyon and into the lower section of Elkhorn Slough on every rising tide was a major source of nitrate, accounting for 80–90% of the nitrogen load during the dry summer period. Nitrate concentrations in Azevedo Pond ranged from 0–20 μM during the dry summer months. Nitrate in Azevedo Pond increased to over 450 μM during a heavy winter precipitation event, and interannual variability driven by differences in precipitation was observed. At both sites, tidal cycling was the dominant forcing, often changing nitrate concentrations by 5-fold or more within a few hours. Water volume flux estimates were combined with observed nitrate concentrations to obtain nitrate fluxes. Nitrate flux calculations indicated a loss of 4 mmol NO3 m?2 d?1 for the entire Elkhorn Slough and 1 mmol NO3 m?2 d?1 at Azevedo Pond. These results suggested that the waters of Elkhorn Slough were not a major source of nitrate to Monterey Bay but actually a nitrate sink during the dry season. The limited winter data at the Main Channel site suggest that nitrate was exported from Elkhorn Slough during the wet season. Export of ammonium or dissolved organic nitrogen, which we did not monitor, may balance some or all of the NO3 flux.  相似文献   

2.
Long records of monthly salinity observations along the axis of Chesapeake Bay, Delaware Bay, and Long Island Sound are used to test a simple advection–dispersion model of the salt distribution in linearly tapered estuaries developed in a previous paper. We subdivide each estuary into three to five segments, each with linear taper allowing a distributed input of fresh water, and evaluate the dispersion in each segment. While Delaware Bay has weak dispersion and a classical sigmoidal salinity structure, Long Island Sound and Chesapeake Bay are more dispersive and have relatively small gradients in the central stretches. Long Island Sound is distinguished by having a net volume and salt flux out of its low-salinity end resulting in a smaller range of salinity and increasing axial gradients at its head rather than the usual asymptotic approach to zero salinity. Estimates of residence times based on model transport coefficients show that Long Island Sound has the most rapid response to fresh-water flux variations. It also has the largest amplitude cycle in river discharge fluctuation. In combination, these cause the large seasonal variation in the salinity structure relative to interannual variability in Long Island Sound as compared with Chesapeake Bay and Delaware Bay.  相似文献   

3.
The average nitrate flux of the lower Mississippi River increased 3.3-fold between 1954–1967 and 1983–2000. During the same time period, the average nitrate concentration increased 2.3-fold while the average discharge increased 40%. Partitioning of the observed trend in nitrate flux among the two flux components, nitrate concentration and discharge, revealed that about 80% of the observed increase in flux could be explained by the increase in nitrate concentration. This indicates that a historical increase in the anthropogenic nutrient inputs has had a far greater impact on the lower Mississippi River nitrate flux than a change in climate. The influence of climatic factors on nitrate flux has been significant and may further increase as a result of global climate change. This argument is supported by two lines of evidence. The residual component of nitrate flux, obtained by removing a trend from the time series, is controlled primarily by the variability in discharge, i.e., climatic factors. Also, there is a highly significant relationship between discharge and nitrate concentration at the low end of the discharge spectrum (<13,000 m3 s?1). The differences in nitrate flux between flood and drought years are significantly larger than the variations in discharge. This makes the Mississippi River nitrate flux potentially sensitive to future changes in the frequency of extreme climatic events. Because of the importance of nitrate for the productivity of coastal phytoplankton, future climate change would likely have important implications for coastal marine eutrophication and hypoxia.  相似文献   

4.
Nitrate represents one of the major pollutants of groundwater in the Gaza Strip. Several cases of blue babies disease were reported in the last couple of years. The present study is an investigation of the seasonal variations in nitrate concentration to better understand the mechanisms and parameters controlling this perilous pollutant. Nitrate was analysed in 100 wells (47 agricultural and 53 domestic) in five governorates. The results showed that 90% of the tested wells have nitrate far beyond the allowed values set by the World Health Organization (WHO). The average concentration of nitrate in domestic wells is 128 mg/L in June-July and 118 mg/L in Jan-Feb, and for the agricultural wells, the average is 100 mg/L in June-July, and 96 mg/L for Jan-Feb. The results suggest that the seasonal differences in nitrate concentrations of the domestic wells are slightly more observable than those of the agricultural wells. The environmental factors that control nitrate in groundwater are: a partially-confined aquifer, lack of a sewage system, population density, the presence of refugee camps, the presence of fertilizers and the annual rain. The variations in nitrate concentration of the domestic wells are not of considerable values. It is suggested that concrete policies in pollution control and/or prevention measures could be formulated upon better understanding of the environmental factors.  相似文献   

5.
A tidally averaged model of estuarine dynamics is used to estimate sediment transport in the Hudson River estuary over the period 1918 to 2005. In long-term and seasonal means, along-channel gradients in sediment flux depend on the estuarine salinity gradient and along-channel depth profile. Lateral depth variation across the estuary affects the near-bottom baroclinic circulation and consequently the direction of net sediment flux, with generally up-estuary transport in the channel and down-estuary transport on the shoals. Sediment transport capacity in the lower estuary depends largely on river discharge, but is modified by the timing of discharge events with respect to the spring–neap cycle and subtidal fluctuations in sea level. Sediment transport capacity also depends on the duration of high-discharge events relative to the estuarine response time, a factor that varies seasonally with discharge and estuarine length. Sediment fluxes are calculated with the assumption that over long periods, the system approaches morphological equilibrium and sediment accumulation equals sea level rise. The inferred across- and along-channel distributions of sediment erodibility correspond with observations of bed properties. Equilibrium is assumed at long time scales, but at annual to decadal time scales the estuary can develop an excess or deficit of sediment relative to equilibrium. On average, sediment accumulates in the estuary during low- and high-discharge periods and is exported during moderate discharge. During high-discharge periods, maximum export coincides with maximum sediment supply from the watershed, but the nearly cubic discharge dependence of fluvial sediment supply overwhelms the roughly linear increase in estuarine transport capacity. Consequently, sediment accumulates in the estuary during the highest flow conditions. Uncertainty remains in the model, particularly with sediment properties and boundary conditions, but the results clearly indicate variability in the sediment mass balance over long time scales due to discharge events.  相似文献   

6.
Phytoplankton seasonal and interannual variability in the Guadiana upper estuary was analyzed during 1996–2005, a period that encompassed a climatic controlled reduction in river flow that was superimposed on the construction of a dam. Phytoplankton seasonal patterns revealed an alternation between a persistent light limitation and episodic nutrient limitation. Phytoplankton succession, with early spring diatom blooms and summer–early fall cyanobacterial blooms, was apparently driven by changes in nutrients, water temperature, and turbulence, clearly demonstrating the role of river flow and climate variability. Light intensity in the mixed layer was a prevalent driver of phytoplankton interannual variability, and the increased turbidity caused by the Alqueva dam construction was linked to pronounced decreases in chlorophyll a concentration, particularly at the start and end of the phytoplankton growing period. Decreases in annual maximum and average abundances of diatoms, green algae, and cyanobacteria were also detected. Furthermore, chlorophyll a decreases after dam filling and a decrease in turbidity may point to a shift from light limitation towards a more nutrient-limited mode in the near future.  相似文献   

7.
Nitrate, as a commonly identified groundwater and surface water pollutant, poses serious threats to human health and the environment. One important source of nitrate in the environment is due to wastewater treatment using Onsite Sewage Treatment and Disposal Systems (OSTDS) (a.k.a., septic systems). To facilitate water resources and environmental management, an ArcGIS-Based Nitrate Load Estimation Toolkit (ArcNLET) is developed to simulate nitrate transport and estimate nitrate load from septic systems and collocated fertilizer applications in groundwater to surface water bodies. It is a screening tool based on a simplified conceptual model of groundwater flow and nitrate transport. It is used in this study to estimate nitrate load from thousands of septic systems to surface water bodies in two neighborhoods located in Jacksonville, FL, USA, where nitrate due to septic systems is believed to be one of the reasons of nutrient enrichment and an isotope study indicates that denitrification is significant. A global sensitivity analysis is performed to identify critical parameters for model calibration, and the most critical parameter is the first-order decay coefficient used to simulate the denitrification process. Hydraulic conductivities at different soil zones have different levels of influence on simulated nitrate concentrations at different locations. By manually adjusting model parameters, simulated shapes of water table and nitrate concentration agree reasonably with average field observations, suggesting that ArcNLET is able to simulate spatial variability of field observations. Estimated nitrate loads exhibit spatial variability, which is useful to facilitate decisions on the conversion of OSTDS into sewers in certain areas for reducing nitrate load from septic systems to surface water bodies.  相似文献   

8.
Across the coastal zone, rates of carbon and nutrient exchange are defined by the spatiotemporal heterogeneity of individual estuarine systems. Elemental stoichiometry provides a mechanism for simplifying overlapping physical, chemical, and biological drivers into proxies that can be used to compare and monitor estuarine biogeochemistry. To this end, the seasonal and tidal variability of estuarine stoichiometry was examined over an annual cycle in North Inlet (NI), South Carolina. Surface samples for dissolved and particulate carbon (C), nitrogen (N), and phosphorus (P) were collected every 20 days (August 2014 to August 2015) over a semi-diurnal tidal cycle. Dissolved nutrient flux estimates of an individual tidal creek were also made. Overall, the results demonstrated the dominance of seasonal versus tidal forcing on water column C:N:P stoichiometry. This seasonal behavior mediated the relative exchange of N and P into and out of the tidal creek and influenced the nutrient status index (NSI) of NI plankton communities. These communities were largely N deficient with the magnitude of this deficiency impacted by assumptions of inorganic versus organic plankton P demand and nutrient supply. Persistent N deficiency appeared to help drive the net import of N, while temporary P surplus likely drives its seasonal export. Combined, these results indicate that material delivery must be considered on seasonal time frames, as net annual fluxes do not reflect the short-term deliveries of C and nutrients into nearshore ecosystems.  相似文献   

9.
River discharge of Ob and Yenisei to the Kara Sea is highly variable on seasonal and interannual time scales. River water dominates the shallow bottom water near the river mouths, making it warmer and less saline but seasonally and interannually more changeable than bottom water on the deeper shelf. This hydrographic pattern shows up in measurements and modelling, and in stable isotope records (δ18O, δ13C) along the growth axis of bivalve shells and in multiple analyses of single benthic foraminiferal shells. Average isotope ratios increase, but sample-internal variability decreases with water depth and distance from river mouths. However, isotope records of bivalves and foraminifera of a sediment core from a former submarine channel of Yenisei River reveal a different pattern. The retreat of the river mouth from this site due to early Holocene sea level rise led to increasing average isotope values up core, but not to the expected decrease of the in-sample isotope variability. Southward advection of cold saline water along the palaeo-river channel probably obscured the hydrographic variability during the early Holocene. Later, when sediment filled the channel, the hydrographic variability at the core location remained low, because the shallowing proceeded synchronously with the retreat of the river mouth.  相似文献   

10.
Changes in nitrate concentration in groundwater from wells in Prince Edward Island, Canada were investigated over time using two datasets. Temporal trends in groundwater nitrate concentrations were assessed annually during 1981–1996 (1,299 observations), and both seasonally and monthly during 1988–1991 (1,868 observations). Data were analysed using linear mixed models with random effects and correlation structures. The average nitrate concentration in the monthly dataset was 3.99 mg/L as NO3–N, with January, May, and November concentrations being higher (p?=?0.018). A seasonal effect was present when season was combined with land use type in an interaction term (p?=?0.004). Wells located in agricultural areas had greater nitrate concentrations than urban areas, which in turn, had greater values than low human-impact areas. Row-cropped areas had higher groundwater nitrate concentrations in the summer, whereas manure storage areas were higher in the spring and autumn. Nitrate in groundwater in areas with low human impact and with centralized sewage disposal infrastructure remained relatively low and stable throughout the seasons. There was no significant annual trend (p?=?0.954), but for individual sites, 9.6% significantly increased in nitrate concentration over time, and 6.6% significantly decreased over time.  相似文献   

11.
《Atmósfera》2014,27(2):117-140
This work focuses on evaluating the ability of the MM5 regional model to represent the basic features of present climate over South America. The spatial distribution of seasonal means and the interannual variability, as well as annual cycles for precipitation and near-surface temperature have been evaluated. The internal variability has also been investigated. The analysis has two objectives: one of them is to quantify the dynamic downscaling ability to represent the current climate and the other is to identify critical aspects of the regional climate model in South America in order to interpret the reliability of future projections for the end of the twenty-first century in the A2 scenario of the IPCC Special Report on Emissions Scenarios. In general, the MM5 model is able to reproduce adequately the main general features, seasonal cycle and year-to-year variability of near surface variables over South America. The spatial distribution of temperature is well represented, but some systematic errors were identified, such as an overestimation in central and northern Argentina and an underestimation in the mountainous regions throughout the year. The general structure of precipitation is also well captured by the regional model, although it overestimates the precipitation in the Andean region (specifically in central and southern Chile) in all seasons and underestimates the rainfall over tropical latitudes. The annual cycle of precipitation is adequately represented in the subregions analyzed, but its representation is better over La Plata basin (LPB), Cuyo (CU) and southeastern Pampas (SEP). The annual cycle of mean temperature is well represented, too. The model systematically overestimates the interannual variability of temperature and underestimates the interannual variability of precipitation. From the analyses of interannual and internal variability, as well as the biases, it can be concluded that regardless the season, the simulated precipitation is reliable at subtropical latitudes, Uruguay, southern Brazil and east-central of Argentina, but is less reliable over areas of complex topography. For temperature, the regional model is reliable over subtropical latitudes, Uruguay and the south of Brazil only during winter, but it is less reliable or it is even in the limit of reliability over central and southern Chile all along the year. Therefore, it is concluded that the MM5 model is a useful tool for the generation of regional climate change scenarios and for the evaluation of regional climate change scenarios over southern South America.  相似文献   

12.
Seasonal variability in heat-related mortality across the United States   总被引:1,自引:1,他引:0  
This study examines the seasonal variability in the heat mortality relationship across 29 US metropolitan areas from 1975 to 2004 to discern the seasonal cycle of the health risk from anomalously high temperatures (relative to the time of season). Mortality data for the 30-year period are standardized to account for population trends and overall seasonal and interannual variability. On days when a city experienced an “oppressive” air mass, mean anomalous mortality was calculated. Results show that while the greatest overall health impact is found mid-summer in many locations due to the peak frequency of hot weather occurring at this time, the relative increase in acute mortality on oppressive air mass days is actually just as large in spring as it is in summer, and in some cases is larger. Late summer and autumn vulnerability to anomalously warm or hot days is much less significant than spring days in all areas except along the Pacific coast. Results show significant spatial variability, with the most consistent results across the more ‘traditionally’ heat vulnerable areas of the Midwestern and northeastern US, along with the Pacific Coast. Elsewhere, the seasonal cycle of the correlation between anomalously high temperatures and human health is more ambiguous.  相似文献   

13.
In this study near-continuous time series of nitrate, electrical conductivity, and discharge were used to identify the dominating hydrological mechanisms that control nitrate export dynamics in two agricultural catchments. The main goal was to assess relationships between contrasting event based as well as long-term nitrate transport behaviour and catchment hydrology. Data records were obtained from online probes that allow field based high-frequency analyses over long time periods. The catchments of the Ammer River (southwestern Germany) and the Weida River (eastern Germany) are similar with respect to size (~100 km²), morphology, and climate and are dominated by agricultural use. Main differences are the stronger urbanization and the occurrence of karstic rocks in the Ammer catchment. Nitrate concentrations are high in water of both streams and range mostly between 20 and 50 mg l?1. Nitrate export in the Ammer catchment is dominated by baseflow and a minor second, diluting runoff component generated in urbanized areas. In contrast, nitrate dynamics of the Weida catchment is governed by the interplay of at least three runoff components, while the largest amount of nitrate is mobilized intermittently by a delayed fast component generated in the catchment’s soils during wet conditions. These interpretations, derived with one online probe at the outlet of each catchment, are well in line with the former modeling results. This study shows that high-resolution data obtained by online techniques offers a large potential to improve the conceptualization of dominating flow and transport processes at catchment scales at relatively low costs and effort.  相似文献   

14.
We continuously measured dissolved silicate concentrations and fluxes discharged from various Rhode River subwatersheds for a period of 14 yr from 1984 to 1998 and for 15 mo in 1971–1972. We also measured dissolved silicate concentrations along a transect from the head of the tide in Rhode River estuary to Chesapeake Bay. The average concentration of dissolved silicate discharged from the Rhode River watershed was 10.8 mg Si l?1. There were consistent and significant differences in silicate concentrations discharged over time and space among subwatersheds. Mean annual silicate flux from the watershed was 26.6 kg Si ha?1 and 93% of this occurred during the winter and spring seasons. There were large interannual variations in silicate flux, due primarily to differences in precipitation and water discharge, rather than silicate concentration. Land use had little or no effect on silicate flux from various subwatersheds. Silicate concentrations discharged from a subset of subwatersheds in 1995–1996 were 25% to 35% lower than in a period with similar precipitation in 1971–1972. Mean annual concentrations of silicate discharged from nine subwatersheds have been declining about 1.5% yr?1 or by 0.21–0.26 mg Si l?1 yr?1 over the last 25 yr. Despite high average silicate fluxes from the watershed, at times the Rhode River estuary developed low dissolved silicate concentrations, which could have been limiting to the growth of diatoms. Examples were in the spring after a winter with low watershed discharge (as low as 0.019 mg Si l?1 in 1995) and after protracted drought (as low as 0.041 mg Si l?1 in 1993).  相似文献   

15.
Understanding the linkage between temporal climate variability and groundwater nitrate concentration variability in monitoring well records is key to interpreting the impacts of changes in land-use practices and assessing groundwater quality trends. This study explores the coupling of climate variability and groundwater nitrate concentration variability in the Abbotsford-Sumas aquifer. Over the period of 1992–2009, the average groundwater nitrate concentration in the aquifer remained fairly steady at approximately 15 mg/L nitrate-N. Normalized nitrate data for 19 individual monitoring wells were assessed for a range of intrinsic factors including precipitation, depth to water table, depth below water table, and apparent groundwater age. At a broad scale, there is a negative correlation between nitrate concentration and apparent groundwater age. Each dedicated monitoring well shows unique, non-uniform cyclical variability in nitrate concentrations that appears to correspond with seasonal (1 year) cycles in precipitation as well as longer-period cycles (~5 years), possibly due to ENSO (El Niño Southern Oscillation) or the Pacific North American (PNA) pattern. These precipitation cycles appear to influence nitrate concentrations by approximately ±30 % of the critical concentration (10 mg/L NO3–N). Not all wells show direct correlation due to many complex local-scale factors that influence nitrate leaching including spatially and temporally variable nutrient management practices and soil/crop nitrogen dynamics (anthropogenic and agronomic factors).  相似文献   

16.
This study investigates the impact of monthly Ganges–Brahmaputra river discharge variations on Bay of Bengal salinity and temperature during the period 1992–1999. The Ganges–Brahmaputra river discharge is characterized by a well-defined seasonal cycle with strong interannual variations. The highest/lowest yearly peak discharge occurs in summer 1998/summer 1992, with 1998 value amounting to twice that of 1992. This river discharge is then used to force an ocean general circulation model. Our main result is that the impact of these rivers on the variability of Bay of Bengal sea surface salinity is strong in the northern part, with excess run-off forcing fresh anomalies, and vice versa. Most of the years, the influence of the interannual variability of river discharge on the Bay salinity does not extend south of ~10°N. This stands in contrast with the available observations and is probably linked to the relatively coarse resolution of our model. However, the extreme discharge anomaly of 1998 is exported through the southern boundary of the Bay and penetrates the south-eastern Arabian Sea a few months after the discharge peak. In response to the discharge anomalies, the model simulates significant mixed-layer temperature anomalies in the northern Bay of Bengal. This has the potential to influence the climate of the area. From our conclusions, it appears necessary to use a numerical model with higher resolution (both on the horizontal and vertical) to quantitatively investigate the upper Bay of Bengal salinity structure.  相似文献   

17.
山东半岛东部近岸海域流系和水团要素季节变化显著,沉积动力环境特殊,发育有剖面形状独特的泥质沉积体。基于两个年度的夏、冬季山东半岛东部近岸海域水体温度、浊度、悬浮体浓度和海流等调查资料,分析了水团要素分布季节变化特征,并结合研究区域冬季海流和余流分布特征,计算了冬季经山东半岛东部近岸海域向南输送的悬浮体净通量。结果表明:山东半岛东部近岸海域悬浮体分布受沿岸流、黄海冷水团和黄海暖流等流系季节变化的影响存在显著季节变化。夏季,水体垂向层结和黄海冷水团均可抑制悬浮体垂向和东西向扩散。与以往的研究有所不同的是,冬季大量悬浮体可穿越沿岸流与黄海暖流形成的海流切变锋面,进入黄海暖流向北输送,海流切变锋的屏障作用会随着黄海暖流的减弱或东移而削弱。每年冬季经山东半岛东部近岸海域输送的悬浮体占渤海海峡向外海输送的悬浮体年净通量的3.22%~9.10%,冬季的悬浮体输送量较大,占冬季渤海海峡向外海输送的悬浮体年净通量的6.84%~19.38%。  相似文献   

18.
Transport and fate of organic carbon by the fluvial system play a significant role in the global biogeochemical cycle of carbon. Previous studies show that the transportation of modern organic carbon from the Himalayan River system accounts for 10–20% of the total global flux to the oceans. Till date, no study has been published which dealt with the transport of organic carbon in the headwaters of the Ganga River. The Alaknanda River is a headwater stream of the Ganga, which flows in the Western Himalayas of India. Water and freshly deposited channel sediment samples were collected during the months of March 2014 and August 2014 and analysed for dissolved organic carbon (DOC), particulate organic carbon (POC) and channel organic carbon (COC). The observed variability of organic carbon concentration was correlated with factors such as discharge, physiography and suspended sediment concentration (SSC). The results show that seasonal erosivity in the basin influences its DOC concentration and physiography, thus acting as a key parameter which controls transportation, oxidation and residence time of the organic matter. The allochthonous input of sediments from the erosional activities is the major source of organic carbon. At Devprayag, Alaknanda contributes 66% of the total DOC flux carried by the Ganga River. The comparison with the previously published values indicate that due to differences in physiography and chemical weathering rate, the Ganga River transports organic carbon mainly as a dissolved load in its upstream and predominantly as POC down the Himalayan foothills.  相似文献   

19.
Intensive research in Chesapeake Bay has indicated that reductions in nitrogen inputs to the bay will be necessary to restore water quality to levels needed for resurgence of bay living resources. Fall-line water quality monitoring efferts have characterized diffuse-source nitrogen inputs from a large percentage of the bay drainage basin, but relatively little information exists regarding rates of nitrogen delivery to tidal waters from coastal plain regions. Extensive nitrate contamination of shallow groundwater due to agricultural activities, coupled with the dominant role of subsurface flow in discharge from Coastal Plain regions of the drainage basin, creates the potential for high rates of nitrogen delivery to tidal waters via groundwater seepage. This study utilized intensive hydrologic and water chemistry monitoring from April 1992 through September 1994 to determine the spatial characteristics of the groundwater-estuarine interface, as well as the rates of subsurface nitrogen transport from an agricultural field into nearshore waters of the Wye River, a subestuary of Chesapeake Bay. The hydrogeologic characteristics of the study site resulted in groundwater discharge to the Wye River occurring almost exclusively within 15 m of the shoreline. Calculated groundwater discharge rates were found to vary widely in the short term due to tidal fluctuations but in the long term were driven by seasonal changes in groundwater recharge rates. The zone of groundwater discharge contracted shoreward during summer months of low discharge, and expanded to a maximum width of approximately 15 m during high discharge periods in late winter. Average discharge rates were more than five times higher in winter versus summer months. Groundwater nitrate concentrations entering the discharge zone were relatively stable throughout the study period, with little evidence of denitrification or nitrate uptake by riparian vegetation. Consequently, nitrogen discharge patterns reflected the strong seasonality in groundwater discharge. Annual nitrate-N discharge was approximately 1.2 kg m?1 of shoreline, indicating drainage basin rates of nitrogen delivery to tidal waters of approximately 60 kg ha?1.  相似文献   

20.
Change dynamics of permafrost thaw, and associated changes in subsurface flow and seepage into surface water, are analysed for different warming trends in soil temperature at the ground surface with a three-phase two-component flow system coupled to heat transport. Changes in annual, seasonal and extreme flows are analysed for three warming-temperature trends, representing simplified climate-change scenarios. The results support previous studies of reduced temporal variability of groundwater flow across all investigated trends. Decreased intra-annual flow variability may thus serve as an early indicator of permafrost degradation before longer-term changes in mean flows are notable. This is advantageous since hydrological data are considerably easier to obtain, may be available in longer time series, and generally reflect larger-scale conditions than direct permafrost observations. The results further show that permafrost degradation first leads to increasing water discharge, which then decreases as the permafrost degradation progresses further to total thaw. The most pronounced changes occur for minimum annual flows. The configuration considered represents subsurface discharge from a generic heterogeneous soil-type domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号