首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The timing, length, and thermal intensity of the climatic growing season in China show statistically significant changes over the period of 1955 to 2000. Nationally, the average start of the growing season has shifted 4.6–5.5 days earlier while the average end has moved 1.8–3.7 days later, increasing the length of the growing season by 6.9–8.7 days depending on the base temperature chosen. The thermal intensity of the growing season has increased by 74.9–196.8 growing degree-days, depending on the base temperature selected. The spatial characteristics of the change in the timing and length of the growing season differ from the geographical pattern of change in temperatures over this period; but the spatial characteristics of change in growing degree-days does resemble the pattern for temperatures, with higher rates in northern regions. Nationally, two distinct regimes are evident over time: an initial period where growing season indicators fluctuate near a base period average, and a second period of rapidly increasing growing season length and thermal intensity. Growing degree-days are highly correlated with March-to-November mean air temperatures in all climatic regions of China; the length of the growing season is likewise highly correlated with March-to-November mean air temperatures except in east, southeast and southwest China at base temperature of 0°C and southeast China at base temperature of 5°C. The growing season start date appears to have the greater influence on the length of the growing season. In China, warmer growing seasons are also likely to be longer growing seasons.  相似文献   

2.
Global warming exerts a lengthening effect on the growing season, with observational evidences emerging from different regions over the world. However, the difficulty for a global overview of this effect for the last century arises from limited availability of the long-term daily observations. In this study, we find a good linear relationship between the start (end) date of local growing season (LGS) and the monthly mean temperature in April (October) using the global gridded daily temperature dataset for 1960–1999. Using homogenized daily temperature records from nine stations where the time series go back to the beginning of the twentieth century, we find that the rate of change in the start (end) date of the LGS for per degree warming in April (October) mean temperature keeps nearly constant throughout the time. This enables us to study LGS changes during the last century using global gridded monthly mean temperature data. The results show that during the period 1901–2009, averaged over the observation areas, the LGS length has increased by a rate of 0.89 days decade?1, mainly due to an earlier start (?0.58 days decade?1). This is smaller than those estimates for the late half of the twentieth century, because of multidecadal climate variability (MDV). A MDV component of the LGS index series is extracted by using Ensemble Empirical Mode Decomposition method. The MDV exhibits significant positive correlation with the Atlantic Multi–decadal Oscillation (AMO) over most of the Northern Hemisphere lands, but negative in parts of North America and Western Asia for start date of LGS. These are explained by analyzing differences in atmospheric circulation expressed by sea level pressure departures between the warm and cool phases of AMO. It is suggested that MDV in association with AMO accelerates the lengthening of LGS in Northern Hemisphere by 53 % for the period 1980–2009.  相似文献   

3.
Daily mean air temperatures from 81 meteorological stations in Northeast China were analyzed for the spatiotemporal change of the climatic growing season during the period 1960–2009. Our results showed that latitude strongly influenced the spatial patterns of the mean start (GSS), end (GSE), and length (GSL) of the growing season. For the area studied, a significant increasing trend in GSL during 1960–2009 was detected at a significance level of 0.01, especially after the early 1980s. The area-average GSL has extended 13.3 days during the last 50 years, mainly due to the advanced GSS evident in the spring (7.9 days). The variations of GSS and GSE were closely correlated with the monthly mean temperature (T mean) of April and October, respectively, while GSL was closely related to the monthly minimum temperatures (T min) of spring (March to April) and autumn (September to October). The distributions of the trends in growing season parameters (GSS, GSE, and GSL) showed great spatial variability over Northeast China. Significant relationships between altitude and the trend rates of the GSS and GSL were detected, while geographic parameters had little direct effect on the change in GSE. This extended growing season may provide favorable conditions for agriculture and forest, and improve their potential production.  相似文献   

4.
5.
Recently, many studies have argued for the existence of two types of El Niño phenomena based on different spatial distributions: the conventional El Niño [or Eastern Pacific (EP) El Niño], and the Central Pacific (CP) El Niño. Here, we investigate the decadal modulation of CP El Niño occurrences using a long-term coupled general circulation model simulation, focusing, in particular, on the role of climate state in the regime change between more and fewer CP El Niño events. The higher occurrence regime of the CP El Niño coincides with the lower occurrence regime of EP El Niño, and vice versa. The climate states associated with these two opposite regimes resemble the leading principal component analysis (PCA) modes of tropical Pacific decadal variability, indicating that decadal change in climate state may lead to regime change in terms of two different types of El Niño. In particular, the higher occurrence regime of CP El Niño is associated with a strong zonal gradient of mean surface temperature in the equatorial Pacific, along with a strong equatorial Trade wind over the area east of the dateline. In addition, the oceanic variables—the mixed layer depth and the thermocline depth—show values indicating increased depth over the western-to-central Pacific. The aforementioned climate states obviously intensify zonal advective feedback, which promotes increased generation of the CP El Niño. Frequent CP El Niño occurrences are not fully described by oceanic subsurface dynamics, and dynamical or thermodynamical processes in the ocean mixed layer and air–sea interaction are important contributors to the generation of the CP El Niño. Furthermore, the atmospheric response with respect to the SSTA tends to move toward the west, which leads to a weak air–sea coupling over the eastern Pacific. These features could be regarded as evidence that the climate state can provide a selection mechanism of the El Niño type.  相似文献   

6.
This study was initiated to analyze the effect of increased snow cover on plant photosynthesis in subarctic mires underlain by permafrost. Snow fences were used to increase the accumulation of snow on a subarctic permafrost mire in northern Sweden. By measuring reflected photosynthetic active radiation (PAR) the effect of snow thickness and associated delay of the start of the growing season was assessed in terms of absorbed PAR and estimated gross primary production (GPP). Six plots experienced increased snow accumulation and six plots were untreated. Incoming and reflected PAR was logged hourly from August 2010 to October 2013. In 2010 PAR measurements were coupled with flux chamber measurements to assess GPP and light use efficiency of the plots. The increased snow thickness prolonged the duration of the snow cover in spring. The delay of the growing season start in the treated plots was 18 days in 2011, 3 days in 2012 and 22 days in 2013. Results show higher PAR absorption, together with almost 35 % higher light use efficiency, in treated plots compared to untreated plots. Estimations of GPP suggest that the loss in early season photosynthesis, due to the shortening of the growing season in the treatment plots, is well compensated for by the increased absorption of PAR and higher light use efficiency throughout the whole growing seasons. This compensation is likely to be explained by increased soil moisture and nutrients together with a shift in vegetation composition associated with the accelerated permafrost thaw in the treatment plots.  相似文献   

7.
Over the century of ‘Climatic Change’ volumes and the 33 years that they span the climate has changed. Here I consider the challenge of interdisciplinary communication to which the first 99 volumes of this journal are dedicated. Have we succeeded and have climatic change researchers shared findings with a broader audience? If this journal has been successful, should the editorial board and publishers now consider new modes of communicating research to a still wider public, say by hiring a communication cartoonist or with an interactive blog?  相似文献   

8.
《Atmospheric Research》1988,22(2):137-147
Rainfall analysis of 33 Nigerian stations for more than 30 years of data has revealed the existence of a latitudinal belt of more pronounced dryness between 6° and 8.5°N within a coastal region of a general rainfall minimum during the so-called ‘little dry season’ of July/August. Temperature, relative humidity and equivalent potential temperature analyses indicate stronger subsidence and inversion in the lower/mid-troposphere over 6°–8.5°N than elsewhere in the coastal region up to 10°N. It is suggested that the lower rainfall within 6° and 8.5°N is due to the stronger subsidence associated with outflows from deep convective systems located to the north of the area.  相似文献   

9.
Sally Brooks 《Climatic change》2014,122(1-2):15-26
This article explores the extent to which efforts to improve productivity of smallholder agriculture through a new ‘Green Revolution’ in Sub Saharan Africa are likely to enhance the capacity of smallholder farmers to adapt to the impacts of climate change. Drawing on empirical material from Malawi and Kenya, the paper finds more conflicts than synergies between the pursuit of higher productivity through the promotion of hybrid maize adoption and crop diversification as a strategy for climate change adaptation. This is despite an oft-assumed causal link between escape from the ‘low maize productivity trap’ and progression towards crop diversification as an adaptive strategy. In both countries, a convergence of interests between governments, donors and seed companies, combined with a historical preference for, and dependence on maize as the primary staple, has led to a narrowing of options for smallholder farmers, undermining the development of adaptive capacities in the longer term. This dynamic is linked to the conflation of market-based variety of agricultural technologies, as viewed ‘from the top down’, with diversity-in-context, as represented by site-specific and locally derived and adapted technologies and institutions that can only be developed ‘from the bottom up’.  相似文献   

10.
Daily global solar radiation is an important input required in most crop models. In the present study, a sunshine-based model, the ?ngstr?m–Prescott model, is employed to estimate daily global solar radiation on a horizontal surface during the growing season in Northeast China. Data from six control groups are used. The controls include the entire sequence, precipitation days, and non-precipitation days both during the growing season and year-round. Estimations are validated by comparing the calculated values with the corresponding measured values. The results indicate that estimating daily global solar radiation during the growing season using data only from the growing season is better than using year-round data. Classifying days with respect to precipitation and non-precipitation is also unnecessary. The performance on estimating daily global solar radiation during the growing season using the entire data in growing season performs best. A sunshine-based equation is obtained using our method to estimate growing season daily radiation for all meteorological stations in Northeast China. The approved approach is expected to be beneficial to crop models and other agricultural purposes.  相似文献   

11.
An attempt is made to find a plausible reason for the weakening of the interrelation between the variability in wind and water volume in the tropical warm pool in the western equatorial Pacific and the onset of El Niño–Southern Oscillation event (ENSO). It is demonstrated that variability in the atmospheric dynamics near the Drake Passage can affect the ENSO development. The weakening of the interrelation between ENSO and the variability in wind together with water volume in the tropical warm pool is caused by the fact that the processes of atmosphere–ocean interaction in the tropical Pacific started exerting smaller influence on the ENSO development (as compared with the processes in the Southern Ocean). This is due to warmer ocean conditions registered since the late 1990s that favored the decrease in the zonal gradient of temperature in the ocean surface layer in the tropics and led to lower atmospheric variability in the tropical Pacific whereas this variability remained the same over the Southern Ocean.  相似文献   

12.
The climate in the 1980’s is characterized by the appearance of two strong ENSO events and by the warmest dec-ade in global mean temperature. Whether there is a linkage between ENSO and global warming? This paper shows the climate anomaly patterns over the global ocean in the 1980’s and their comparison with that of ENSO composite mode and that simulated by 2 × CO2, indicating the role of super ENSO in the establishment of new climate regime in the 1980’s  相似文献   

13.
14.
水汽输送的变化对于降水的变化有重要贡献。基于优选的13个CIV1IP5模式发现:RCP4.5和RCP8.5排放情景下,1.5°C和2.0°C增暖时东亚夏季水汽输送均加强,且2.0°C增暖时模式间一致性更好;水汽含量的增加对东亚南部和北部水汽输送的加强均有贡献,东亚南部水汽输送的加强也与低层环流的加强相联系。0.5°C额外增暖(1.5°C和2.0°C增暖间比较)时,两种排放情景下水汽输送的变化在我国南海与东北地区存在差异,使得两个地区降水变化存在差异;水汽输送的变化与低层环流的变化关系密切,且模式间一致性相对低。  相似文献   

15.
16.
California is home to some of the worst air quality in the nation and ninety percent of the state’s population lives in areas that are out of attainment with at least one of the National Ambient Air Quality Standards. Increasing temperatures associated with climate change will make meeting air quality standards more difficult. Under a changing climate, additional emission reductions will be needed to achieve clean air standards. These additional emission reductions and associated costs are called the “climate penalty.” Air quality planning is the process of assessing the emission reductions needed to meet air quality standards and outlining the programs and policies that will be implemented to achieve these emission reductions. This paper reviews the challenges that a changing climate will pose for air quality planning in California and identifies opportunities for adaptation. While state air quality regulators in California are taking enormous strides to address global warming, less work is happening at the regional, air district level. Air districts are the agencies responsible for developing air quality improvement plans. An important first step for regional air quality regulators will be to quantify the climate penalty and understand their region’s vulnerability to climate change. Limitations in regulatory authority could impede measures to improve preparedness. Regional agencies will likely need to look to state and federal agencies for additional emission reductions.  相似文献   

17.
18.
We quantify the current water use of China’s thermoelectric power sector with plant-level data. We also quantify the future implications for cooling water use of different energy supply scenarios at both a regional and national levels. Within China, water withdrawal and consumption are projected to exceed 280 and 15 billion m3 respectively by 2050 if China does not implement any new policies, up from current levels of 65.2 and 4.64 billion m3. Improving energy efficiency or transforming the energy infrastructure to renewable, or low-carbon, sources provides the opportunity to reduce water use by over 50%. At a regional level, central and eastern China account for the majority of the power sector’s water withdrawals, but water consumption is projected to increase in many regions under most scenarios. In high-renewable and low-carbon scenarios, concentrated solar power and inland nuclear power, respectively, constitute the primary fresh water users. Changing cooling technology, from open-loop to closed-loop in the south and from closed-loop to air cooling in the north, curtails the power sector’s water withdrawal considerably while increasing water consumption, particularly in eastern and central China. The power sector’s water use is predicted to exceed the regional industrial water quota under the ‘3 Red Line’ policy in the east under all scenarios, unless cooling technology change is facilitated. The industrial water quota is also likely to be violated in the central and the northern regions under a baseline scenario. Moreover, in line with electricity production, the power sector’s water use peaks in the winter when water availability is lowest. Water-for-energy is a highly contextual issue – a better understanding of its spatio-temporal characteristics is therefore critical for development of policies for sustainable cooling water use in the power sector.  相似文献   

19.
The Stern Review has played an enormous role in making the world of business aware of the challenge of long-term climate change. In order to make real progress on the basis of this awareness, it is important to pay attention to the difference between human suffering and losses of gross domestic product (GDP). The Review has compared climate change to experiences of suffering like World War I. That war, however, hardly affected global GDP. The long-term damages to be expected from business-as-usual greenhouse gas emissions include loss of the coastal cities of the world over the next millennia. This would be an act of unprecedented barbarism, regardless of whether it would slow down economic growth or perhaps even accelerate it. Business leaders worried about climate change need to pay attention to the tensions between ethical and economic concerns. Otherwise, a credibility crisis threatens global climate policy. An important step to establish the credibility needed for effective climate policy will be to gradually move towards a regime where emission permits are auctioned, not handed out as hidden subsidies. The revenues generated by permit auctions should be used to establish a global system of regional climate funds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号