首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 598 毫秒
1.
2.
1 Introduction A series of studies have indicated that there were two extensional phases in the North Sea (Fig. 1). An earlier period (Late Permian-Early Triassic) of rifting occurred widely in these areas, with predominant extension direction of W-E (F?rseth, 1996; F?rseth et al., 1997). In contrast to the widely distributed Permo-Triassic extension, Jurassic extension in the North Sea were generally much more localized into the three main rift arms (Fig. 1): the Viking Graben, Moray…  相似文献   

3.
Oxfordian reefal episodes of Lorraine and Burgundy have a long time been considered as contemporaneous. Biostratigraphic data and sequential evolutions peculiar to each region indicate their structural autonomy during Oxfordian times. A north‐south‐oriented well‐logging transect shows that, during the Middle Oxfordian, a shallow reefal platform developed in Lorraine while thin deeper deposits occurred in Burgundy. In spite of their different ages, reefal episodes of Middle Oxfordian in Lorraine and Upper Oxfordian in Burgundy exhibit a broadly similar vertical evolution of coral communities. During the Late Oxfordian, the contemporaneous occurrence of a diversified assemblage in the Burgundy region, a colder coral assemblage characterized by eurytopic genera and the decrease in seawater isotopic temperatures in Lorraine can be explained by a shift in trophic conditions, a climatic change related to structural rearrangements in this strategic place and a modification of oceanic circulations between the arctic and the Tethyan regions.  相似文献   

4.
The study of sedimentary facies in the quarry of Dompcevrin (Middle Oxfordian) located northwestward of St-Mihiel (Meuse department) provides evidences of high-energy depositional conditions. The occurrence of beaches associated with hurricane coral breccias containing megaclasts is characteristic of platform edge environments. The open sea was located northeastward, in the direction of Germany, as it is indicated by the direction of progradation of beaches. It is concluded that the Oxfordian carbonate platform of Lorraine was opened to the northeast toward the Germanic Sea during the Middle Oxfordian. To cite this article: C. Carpentier et al., C. R. Geoscience 336 (2004).  相似文献   

5.
Stable isotope (δ18O, δ13C) analyses were performed on well preserved belemnites, oysters, and rhynchonellid brachiopods from the Middle to Upper Jurassic of the Morondava Basin in southern Madagascar. Both brachiopods and oysters indicate similar average temperatures of 18.7 to 19.3 °C in the Early Callovian, followed by a temperature decrease towards the Middle Oxfordian (13.9 °C) and a minimum in the Early Kimmeridgian (12.3 °C). In contrast, belemnites from the Oxfordian show lower average temperatures of 10.0 °C, which is likely caused by specific conditions for these organisms (e.g., different fractionation or life habits). Additionally, three oysters from the Upper Oxfordian and Lower Kimmeridgian were used for high-resolution stable isotope analyses. The data show seasonal fluctuations of >6 °C around averages between 14.4 and 14.7 °C. Latitudinal temperature gradients for the Callovian and Kimmeridgian are similar to today at the examined low latitudes of the southern hemisphere. The observed cooling of around 5 °C from the Callovian to the Oxfordian/Kimmeridgian can be attributed to a concurrent southward drift of Madagascar during the break-up of Gondwana. Thus, the study underlines the importance of considering palaeogeography in interpreting stable isotope data as well as the potential of detecting and timing palaeogeographic events by using stable isotope analyses.  相似文献   

6.
The Oxfordian–Lower Hauterivian section of the Nordvik Peninsula (northern Central Siberia) is a reference for developing zonal scales for various fossil groups and improving the Boreal zonal standard. In the middle 1950s–late 1980s, it was studied extensively by geologists, stratigraphers, lithologists, and experts on various fossil groups. These studies yielded rich fossil and microfossil collections and a set of parallel zonal scales for various faunal groups. Recently, a new detailed ammonite zonation of the Oxfordian and Kimmeridgian units of this section has been proposed. These results contradict the previous biostratigraphic data on ammonites, foraminifers, and palynomorphs. In the present paper, all the biostratigraphic data on the Oxfordian and Kimmeridgian units of the Nordvik Peninsula (Cape Urdyuk-Khaya) and northern Central Siberia undergo a comprehensive analysis and comparison with those on the Boreal Realm. The ammonite-constrained stratigraphic position of the lower Upper Jurassic in the Cape Urdyuk-Khaya section is interpreted as Upper Oxfordian or Middle Oxfordian. In our view, this difference in the understanding is due to the misidentification of some Oxfordian ammonite forms. The zones based on other fossil groups (foraminifers, dinocysts) which were distinguished in the Upper Oxfordian and Kimmeridgian sections of the Nordvik Peninsula are well traceable circumarctically. Their stratigraphic position in various regions of the Northern Hemisphere is constrained by ammonites and bivalves. However, if we use the last alternative ammonite zonation of this section part, hardly explicable contradictions will appear in interregional foraminiferal and dinocyst correlations.  相似文献   

7.
A detailed study of the lithologies of each of the beds present in the Osmington Oolite Formation of south Dorset is used to allocate numerous loose-collected ammonites to their correct stratigraphic horizons. Much new material has been collected by the author in addition to the limited amount of material available in museum collections. The age of the faunas of the three constituent members of the Osmington Oolite Formation is each assessed and placed into the context of Middle Oxfordian ammonite sequences elsewhere in England and in Europe.  相似文献   

8.
1 Introduction and Background Along with stunning paleontological discoveries from the world-renowned fossil beds in western Liaoning Province of China, recent findings from the lacustrine deposits exposed at the Daohugou village (Fig. 1) near Ningcheng, Inner Mongolia, include superbly preserved pterosaur, salamander, insect, and plant fossils (Ji and Yuan, 2002; Wang et al., 2002; Gao and Shubin, 2003; Zheng et al., 2003; Rasnitsyn and Zhang, 2004). The Daohugou fossil beds consist of…  相似文献   

9.
鄂尔多斯盆地东北缘中侏罗统延安组植物群与古气候分析   总被引:2,自引:2,他引:0  
鄂尔多斯盆地东北缘中侏罗统延安组为一套以河流滨湖相沉积为主的中粒中细粒长石砂岩、粉砂岩(泥质粉砂岩)、黑色页岩、粘土岩夹煤层。其中产大量的植物化石,计20属39种。经分析认为,这个植物群是一个属于我国北方区以Coniopteris-Phoenicopsis为代表的中侏罗世早期植物群,植物群组合反映鄂尔多斯盆地东北缘中侏罗世为偏潮湿的暖温带气候。  相似文献   

10.
In Tasmania shelly fossils are known from Middle and Upper Cambrian sediments of the Dundas Trough, Fossey Mountain Trough, Dial Range Trough, Beaconsfield Trough, Smithton Basin, Adamsfield Trough and from within sediments associated with the Mount Read Volcanics of Western Tasmania. In the Dundas Trough fossils range in age from early Middle Cambrian (Ptychagnostus gibbus Zone) to the middle Late Cambrian (pre‐Payntonian A or B). Late Middle Cambrian fossils occur in sediments associated with the Mount Read Volcanics in two places in Western Tasmania. Late Middle Cambrian fossils only are known from the Smithton Basin and the Beaconsfield Trough. Late Middle to early Late Cambrian faunas are known from the Dial Range Trough; the Adamsfield Trough contains middle Middle to middle Late Cambrian fossils. Tasmanian Cambrian faunas show affinities with those of Queensland, China, the northwest Siberian Platform and northern Victoria Land, Antarctica.  相似文献   

11.
In large parts of the Kachchh Basin, a Mesozoic rift basin situated in western India, the Oxfordian succession is characterized by strong condensation and several depositional gaps. The top layer of the Early to Middle Oxfordian Dhosa Oolite member, for which the term ‘Dhosa Conglomerate Bed’ is proposed, is an excellent marker horizon. Despite being mostly less than 1 m thick, this unit can be followed for more than 100 km throughout the Kachchh Mainland. A detailed sedimentological analysis has led to a complex model for its formation. Signs of subaerial weathering, including palaeokarst features, suggest at least two phases of emersion of the area. Metre‐sized concretionary slabs floating in a fine‐grained matrix, together with signs of synsedimentary tectonics, point to a highly active fault system causing recurrent earthquakes in the basin. The model takes into account information from outcrops outside the Kachchh Mainland and thereby considerably refines the current understanding of the basin history during the Late Jurassic. Large fault systems and possibly the so‐called Median High uplift separated the basin into several sub‐basins. The main reason for condensation in the Oxfordian succession is an inversion that affected large parts of the basin by cutting them off from the sediment supply. The Dhosa Conglomerate Bed is an excellent example, demonstrating the potential of condensed units in reconstructing depositional environments and events that took place during phases of non‐deposition. Although condensed sequences occur frequently throughout the sedimentary record, they are particularly common around the Callovian to Oxfordian transition. A series of models has been proposed to explain these almost worldwide occurrences, ranging from eustatic sea‐level highstands to glacial phases connected with regressions. The succession of the Kachchh Basin shows almost stable conditions across this boundary with only a slight fall in relative sea‐level, reaching its minimum not before the late Early Oxfordian.  相似文献   

12.
青海玉树地区首次发现中泥盆世植物化石   总被引:4,自引:0,他引:4       下载免费PDF全文
青海玉树西部地区原下石炭统杂多群发现保存完好的Psilophyton dapsile等植物化石,据此,含化石地层厘定为中泥盆统。这一发现对研究青海南部地区泥盆纪沉积环境以及我国泥盆纪植物分区具有十分重要的意义。  相似文献   

13.
The Middle Oxfordian to lowermost Upper Kimmeridgian ammonite faunas from northern Central Siberia (Nordvik, Chernokhrebetnaya, and Levaya Boyarka sections) are discussed, giving the basis for distinguishing the ammonite zones based on cardioceratid ammonites of the genus Amoeboceras (Boreal zonation), and, within the Kimmeridgian Stage, faunas–for distinguishing zones based on the aulacostephanid ammonites (Subboreal zonation). The succession of Boreal ammonites is essentially the same as in other areas of the Arctic and NW Europe, but the Subboreal ammonites differ somewhat from those known from NW Europe and Greenland. The Siberian aulacostephanid zones—the Involuta Zone and the Evoluta Zone—are correlated with the Baylei Zone (without its lowermost portion), and the Cymodoce Zone/lowermost part of the Mutabilis Zone (the Askepta Subzone) from NW Europe. The uniform character of the Boreal ammonite faunas in the Arctic makes possible a discussion on their phylogeny during the Late Oxfordian and Kimmeridgian: the succession of particular groups of Amoeboceras species referred to successive subgenera is revealed by the occurrence of well differentiated assemblages of typical normal-sized macro and microconchs, intermittently marked by the occurrence of assemblages of paedomorphic “small-sized microconchs” appearing at some levels preceeding marked evolutionary modifications. Some comments on the paleontology of separate groups of ammonites are also given. These include a discussion on the occurrence of Middle Oxfordian ammonites of the genus Cardioceras in the Nordvik section in relation to the critical review of the paper of Rogov and Wierzbowski (2009) by Nikitenko et al. (2011). The discussion shows that the oldest deposits in the section belong to the Middle Oxfordian, which results in the necessity for some changes in the foraminiferal zonal scheme of Nikitenko et al. (2011). The ammonites of the Pictonia involuta group are distinguished as the new subgenus Mesezhnikovia Wierzbowski and Rogov.  相似文献   

14.
Anomalous patterns of the sedimentary architecture have been recognized in passive margins, and only recently they have been associated with plate reorganization or compressional deformations propagating from distant margins. With the aim of discussing the sedimentary architecture and the potential tectonic perturbations to the passive margin pattern, we present the revision of the stratigraphy of a fossil passive margin, involved in the retrobelt of the Alpine orogeny. The main events at the transition from rifted to passive margin have been controlled by palaeoceanography, i.e. the trophic state of surface waters that hampered the carbonate photozoan productivity for a long period between Toarcian and Callovian. Toward the latest Bajocian–earliest Bathonian, the platform productivity increased, dominated by ooids. A regressional trend up to the Middle Bathonian allowed the rapid infilling of the previous rift basin. The successive aggradation in the platform was still dominated by non-skeletal grains until the Early Oxfordian. The Middle Oxfordian to Early Kimmeridgian was a time of recovery of the palaeoceanographic conditions allowing the establishment of a hydrozoan/coral rich platform. The sedimentation rates in the platform increased at the margin of the productive Friuli–Adriatic Platform. From Late Kimmeridgian on, the sedimentation rates at the platform margin returned to the pre-Oxfordian values. At the scale of the whole Adriatic Platform, the Middle Oxfordian to Early Kimmeridgian interval is variable in thickness from 0 to 800 m, and it depicts a couple of folds of around 80–100 km of wavelength. The subsidence analysis of wells and composite logs from literature suggests this interval as a perturbation to the passive margin trend of around 3 Myr of duration. We interpret this folding event, superimposed to the passive margin subsidence, as the far field expression of the transition from intraoceanic to continental obduction, occurred at the eastern Adria active margin.  相似文献   

15.
Abstract Successions across the Middle–Upper Jurassic disconformity in the Lusitanian Basin (west‐central Portugal) are highly varied, and were probably developed on a large westward‐inclined hangingwall of a half‐graben. The disconformity is preceded by a complex forced regression showing marked variations down the ramp, and provides an example of the effects of rapid, relative sea‐level falls on carbonate ramp systems. In the east, Middle Jurassic inner ramp carbonates (‘Candeeiros’ facies) are capped by a palaeokarstic surface veneered by ferruginous clays or thick calcretes. In the west, mid‐outer ramp marls and limestones (‘Brenha’ facies) are terminated by two contrasting successions: (1) a sharp‐based carbonate sandbody capped by a minor erosion surface, overlain by interbedded marine–lagoonal–deltaic deposits with further minor erosion/exposure surfaces; (2) a brachiopod‐rich limestone with a minor irregular surface, overlain by marls, lignitic marls with marine and reworked non‐marine fossils and charophytic limestones, with further minor irregular surfaces and capped by a higher relief ferruginous erosional surface. The age ranges from Late Bathonian in the east to Late Callovian in the west. This disconformity assemblage is succeeded by widespread lacustrine–lagoonal limestones with microbial laminites and evaporites (‘Cabaços’ facies), attributed to the Middle Oxfordian. Over the whole basin, increasingly marine facies were deposited afterwards. In Middle Jurassic inner‐ramp zones in the east, the overall regression is marked by a major exposure surface overlain by continental sediments. In Middle Jurassic outer‐ramp zones to the west, the regression is represented initially by open‐marine successions followed by either a sharp marine erosion surface overlain by a complex sandbody or minor discontinuities and marginal‐marine deposits, in both cases capped by the major lowstand surface. Reflooding led to a complex pattern of depositional conditions throughout the basin, from freshwater and brackish lagoonal to marginal‐ and shallow‐marine settings. Additional complications were produced by possible tilting of the hangingwall of the half‐graben, the input of siliciclastics from westerly sources and climate change from humid to more seasonally semi‐arid conditions. The Middle–Late Jurassic sea‐level fall in the Lusitanian Basin is also recorded elsewhere within the Iberian and other peri‐Atlantic regions and matches a transgressive to regressive change in eustatic sea‐level curves, indicating that it is related in part to a global event.  相似文献   

16.
Detailed investigation of facies and sedimentary structures reveals that, during the Middle Oxfordian to Late Kimmeridgian, the shallow carbonate platform of the Swiss and French Jura Mountains recorded high-frequency sea-level fluctuations quite faithfully. The cyclostratigraphic analysis within the established biostratigraphic and sequence-chronostratigraphic framework implies that the resulting hierarchically stacked depositional sequences formed in tune with the orbital cycles of precession (20 kyr) and eccentricity (100 and 400 kyr). The astronomical time scale presented here is based on the correlation of 19 platform sections and 4 hemipelagic sections from south-eastern France where good biostratigraphic control is available. The cyclostratigraphic interpretation suggests that the interval between sequence boundaries Ox4 and Kim1 (early Middle Oxfordian to earliest Kimmeridgian) lasted 3.2 myr and that the Kimmeridgian sensu gallico has a duration of 3.2 to 3.3 myr. The astronomical time scale proposed here is compared to time scales established by other authors in other regions and the discrepancies are discussed. Despite these discrepancies, there is a potential to estimate the durations of ammonite zones and depositional sequences more precisely and to better evaluate the rates of sedimentary, ecological and diagenetic processes. Editorial handling: Hanspeter Funk, Helmut Weissert, Stefan Bucher  相似文献   

17.
三峡东部中寒武统化石稀少。本文对在宜昌三斗坪中寒武世覃家庙组二段下部含鲕粒灰岩、细晶灰岩中所采获的三叶虫Xingrenaspis sp.进行了研究和描述,并对含化石地层时代进行了讨论。此次发现,丰富了峡东中寒武世的化石资料,也为本区中寒武世地层划分对比提供了新的依据。  相似文献   

18.
This paper presents comprehensive macro‐ and micropalaeontological analyses of taxa recovered from mud and stream lags disgorged from mudsprings at Wootton Bassett, Wiltshire, England. These mudsprings are unusual as they are found in a stable intraplate tectonic setting, but the techniques and provisos employed in this investigation can equally well be employed to source the material venting from other mudsprings, including those found in compressional tectonic settings. The Wootton Bassett mudsprings Site of Special Scientific Interest at Templars Firs (Wiltshire, England), has become renowned through considerable media coverage over the past few years, largely on account of the well preserved fossils exhumed in the outpourings of mud from a series of springs. However, it is emphasized that care must be exercised when undertaking sourcing investigations to ensure that the possibilities of contamination are minimized. Thus micropalaeontological analysis of freshly disgorged mud samples is shown to be a more accurate method of obtaining biostratigraphic information than the use of macrofossil material from stream lags. The erupted material contains biostratigraphically diagnosed microfossil species from several Later Jurassic ammonite zones, indicating sourcing from more than one subsurface stratigraphical horizon. Integrating this information with the local lithostratigraphy described herein, the source material for the mud can therefore be identified as the local Ampthill and Kimmeridge clays immediately underlying the site at a depth of around 10 m. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
Trace fossils from proglacial lake sediments   总被引:1,自引:0,他引:1  
Trace fossils have been discovered in Middle Pleistocene proglacial lake sediments from St. Albans, Hertfordshire, England. They indicate that this environment was capable of supporting a variety of benthonic animals. The fossils are described and tentatively assigned to several invertebrate groups.  相似文献   

20.
The Oxfordian Stage of West Siberia contains Boreal ammonites Cardioceratidae. The authors’ bank of paleontological data includes ~ 500 definitions of Cardioceratinae, permitting a considerable refinement of the official Oxfordian regional zonal scale. The lower substage is divided into the Cardioceras (Scarburgiceras) obliteratum, C. (S.) scarburgense, and C. (S.) gloriosum Zones instead of beds with C. (S.) spp., whereas the C. (Cardioceras) percaelatum and C. (C.) cordatum Zones are recognized instead of beds with C. (C.) spp. We have found new ammonites typical of the Middle Oxfordian C. (Subvertebriceras) densiplicatum and C. (Miticardioceras) tenuiserratum Zones. The first of these zones is divided into two subzones. The Upper Oxfordian includes the Amoeboceras glosense and A. serratum Zones instead of beds with A. spp., and the A. regulare Zone and beds with A. rosenkrantzi are recognized instead of the A. ex gr. regulare Zone. The genus Ringsteadia (Aulacostephanidae) is observed only in the northwestern part of the region, along the eastern slope of the North Urals; therefore, two upper units of the biostratigraphic scale correspond to beds with Ringsteadia marstonensis.In the Oxfordian, West Siberia and northern Siberia belonged to the North Siberian province of the Arctic realm. Only in the latest Oxfordian did the northwestern West Siberian basin become part of the Boreal-Atlantic realm, as evidenced by the distribution of Ringsteadia on the eastern slope of the Cis-Polar Urals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号