首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
利用NCEP1°×1°再分析资料,对新疆夏季两次塔什干低涡天气过程进行对比分析,从天气尺度环流系统配置、动力和水汽输送的角度探讨造成南疆不同降水强度的塔什干低涡特征差异。结果表明:当南亚高压中心位于70°E,南疆位于200 hPa急流轴出口辐散区,500 hPa塔什干低涡东移携带强西南气流时,700 hPa盆地有显著东风急流,偏西地区中低层切变辐合长时间维持,同时通过接力输送的阿拉伯海水汽与中低层东风急流携带的水汽强烈辐合,导致大范围暴雨,高层正MPV1、负MPV2向下伸展,中低层不稳定性、斜压性增强,配合700 hPa以下负MPV1、正MPV2激发垂直涡度增长,对流性降水加强;当南亚高压中心始终维持偏东(90°E),南疆位于200 hPa急流轴上,500 hPa里海脊和新疆东部高压脊势力相当时,塔什干低涡减弱为槽影响南疆,700 hPa南疆盆地东风气流弱且位置偏西,南疆地区无明显高层辐散、中低层切变辐合,不利于垂直上升运动的发展和水汽的集中辐合,难以造成显著降水。  相似文献   

2.
近40年来塔什干低涡活动特征的统计分析   总被引:1,自引:0,他引:1  
利用1971-2010年NCEP/NCAR逐日再分析资料,根据塔什干低涡定义,分析了塔什干低涡的时空分布特征、移动路径及其对南疆天气的影响.结果表明:(1)1971-2010年,塔什干低涡过程平均每年出现7.95次,成熟期生命史平均为3.1天,4天以上的仅有13.5%; (2)4-6月和9-10月是塔什干低涡活动的两个高峰期,其中5月出现次数最多,其次是10月和6月;(3)塔什干低涡频次的年代际变化呈抛物线型,1970-1980年代由78次增加到83次,之后逐渐减少,年低涡频次存在7年左右的显著振荡周期,同时具有1 3年的次振荡周期;(4)塔什干低涡活动有两个高频中心,分别位于67.5°E,40.0°N和72.5°E,35.0°N,移动路径以偏东方向为主,占84%,西退塔什干低涡仅有5.7%;造成南疆显著降水天气的塔什干低涡占其总数的23.3%,夏季此类低涡所占比例最高,达41.2%.  相似文献   

3.
利用长时间序列气象卫星及多源数据,研究青藏高原低涡综合识别方法,完成低涡数据集并与青藏高原低涡年鉴中低涡位置、路径和分布进行对比分析。研究表明:卫星识别多年平均低涡分布存在两个高值区,分别位于西藏的中北部和青海西南部及青藏高原西部,在有探空站的青藏高原东部(90°E以东),卫星识别低涡高值区和年鉴数据吻合,冬半年,卫星识别低涡活动明显高于年鉴,主要为青藏高原西部低涡活动引起,逐年及2008年低涡路径对比也显示,有探空站区域卫星识别低涡和年鉴具有较好的一致性,表明卫星识别低涡在青藏高原东部地区的可信性;2015年青藏高原中西部新增3个探空站,年鉴中90°E以西低涡约占全年低涡总数量的22%,该区域卫星识别低涡和年鉴一致性较高,表明卫星识别低涡在高原中西部的可信性。因此,卫星识别低涡与年鉴低涡在有探空站区域有较好的一致性,可对年鉴中青藏高原东部低涡源地进行追踪,又可识别青藏高原中西部尤其是活跃于冬半年的低涡,是青藏高原年鉴低涡数据的有效补充。  相似文献   

4.
利用NECP再分析资料、卫星云图资料、新一代天气雷达资料及实况观测资料对2010年4月12-13日一次东北低涡产生的黑龙江省暴雪天气过程进行分析,详细讨论了此次暴雪的发生机制及天气特点。此次降雪过程由地面气旋北上引发,高空低涡前部东风暖平流和槽后冷平流相遇形成暖锋锋生,低涡东北部产生暴雪。低空急流对水汽的输送作用和低层较强的辐合上升运动为此次降雪过程提供增强机制。云系的发展、移动与降雪有较好的对应关系,较大降雪出现在逗点云系顶部。  相似文献   

5.
北上低涡引发辽宁历史罕见暴雪天气过程的分析   总被引:16,自引:1,他引:16  
2007年3月3~5日, 辽宁大部分地区普降大到暴雪。本文对此次暴雪过程及其成因进行了初步分析, 通过对各种资料, 包括营口多普勒雷达资料的分析, 认为500 hPa南北支槽合并带来的强冷暖空气交汇及北上低涡的发展是产生暴雪天气的主要背景; 地面气旋北上带来的南来倒槽是产生暴雪的天气特征; 低空急流输送水汽和低层上升运动是增强降雪强度的有利条件, 这一分析结果对预报暴雪天气具有指示意义。  相似文献   

6.
文章利用常规气象观测资料、NCEP再分析资料、自动气象站降水资料、南郊观象台雷达资料、FY-2G卫星资料、南郊观象台微波辐射计资料、GPS水汽探测资料,对北京市房山区2015年7月16—17日和2017年6月22—23日两次低涡暴雨天气过程进行对比分析,探讨两次暴雨天气过程发生发展过程中的异同。结果表明:两次暴雨天气过程均是在高空低涡的大尺度环流背景条件下发生的。"6·22"过程的低涡强度、位置以及地面倒槽强度更有利于在房山区形成暴雨,且动力条件、水汽输送条件和不稳定条件明显强于"7·16"过程。"7·16"过程中尺度特征更为明显,中尺度云团强烈发展,雷达回波强度强,且具有"列车效应"的特征,因此造成的降水强度更强。  相似文献   

7.
利用常规气象观测资料,对贺州市后汛期一次低涡暴雨的影响系统、降水强度以及不稳定能量、水汽、动力机制进行分析,探究其成因,结果表明:此次过程主要受低涡影响,不稳定条件好,水汽充足,在动力抬升作用下,能量得到充分释放,降水强度大;由于未建立低空急流,没有后续水汽补充,降水持续时间短.  相似文献   

8.
9.
利用常规气象资料、物理量场资料和雷达卫星等资料,从大尺度环流背景、降水天气影响系统、物理量场、急流等方面,分析了2009年7月8—9日发生在山东省的一次区域性暴雨的成因。结果表明,强降水是西风槽与低涡切变线和地面气旋共同影响造成的,低空急流是主要的水汽输送通道,为暴雨产生提供了水汽条件。高低空急流相距越近,其耦合作用越明显,对流发展越旺盛,降水越强。暴雨落区与水汽、涡度、层结稳定度指数等环境物理量有较好的对应关系。暴雨落区变化与低涡移动路径基本一致,后期跟地面气旋移动路径基本一致。  相似文献   

10.
对2007年7月16-19日高原低涡东移形成的川渝地区大范围大暴雨过程,利用自动气象站雨量资料、常规观测资料、FY-2C TBB云图资料和T213分析场资料,采用天气动力学和中尺度诊断方法,分析了大暴雨的形成机制.结果表明:此次大范围大暴雨过程是高原低涡诱发西南低涡发展从而形成耦合系统造成的,其垂直上升运动气柱和涡柱的耦合发展与维持是低涡发生发展并产生持续性强降水的动力机制,对流层下部深厚不稳定层结的形成和维持是低涡发展并形成持续对流性降水的热力层结条件.  相似文献   

11.
东北冷涡特征及其关键区的计算机识别   总被引:5,自引:0,他引:5  
张丰启 《气象》2001,27(9):46-48
根据东北冷涡的定义及其在等压面上高度的变化特征,利用计算机在等压面网格点高度上自动识别东北冷涡的中心经纬度、中心高度和半径,确定东北冷涡的位置、强度和面积。还给出了在任意形状关键区中自动识别是否存在冷涡的方法。业务应用的实践证明,该方法对东北冷涡特征的识别准确,简便可靠,对观测错误具有较强的识别、处理能力。  相似文献   

12.
此次过程主要影响系统是蒙古气旋,冷空气源地为中西伯利亚,经贝湖、蒙古发展加深形成蒙古低压并从西南开始影响黑龙江省。过程从2015年2月20日夜间开始至23日结束。黑龙江省共有40个观测点过程量达到暴雪级别,南部部分地区经历了比较明显的降水相态转换。分析最终得出:(1)锋区强弱以及位置是产生强降雪的关键,暖锋强于冷锋时易产生强降雪,冷锋强于暖锋时则降雪量级一般不大。(2)急流是大范围强降雪产生的必要条件,急流不仅提供了动力条件,与水汽源地联通后更成为重要的水汽条件。(3)中低层正涡度、中高层负涡度结构的稳定维持,使低层气旋性涡度环流增强,为强降雪天气提供了动力条件。  相似文献   

13.
The merging of multiple vortices is a fundamental process of the dynamics of Earth’s atmosphere and oceans. In this study, the interaction of like-signed vortices is analytically and numerically examined in a framework of two-dimensional inviscid barotropic flows. It is shown that barotropic vortex interaction turns out to be more intricate than simple merging scenarios often assumed in previous studies. Some particular configurations exist in which the vortex merging process is never complete despite strong interaction of like-signed vortices, regardless of the strengths or distances between the vortices. While the conditions for a complete vortex merging process introduced in this study appear to be too strict for most practical applications, this study suggests that careful criteria for vortex mergers should be properly defined when simulating the interaction of vortices, because the merging may not always result in a final enhanced circulation at the end of the interaction, as usually assumed in the literature.  相似文献   

14.
一次东北冷涡不同阶段强对流天气特征对比分析   总被引:3,自引:0,他引:3  
利用NCAR/NCEP再分析(1?×1?)资料、区域自动站观测、FY-2D/2E卫星观测和GPS/MET水汽监测等资料,对2012年6月7-18日长春地区发生在同一东北冷涡系统不同演变阶段的3次强对流天气进行对比诊断分析。结果表明:在冷涡形成期,高低空急流耦合产生的次级环流上升支,触发锋前不稳定能量释放,导致中β尺度孤立深厚湿对流系统出现;在冷涡发展期,对流层高层干冷空气向对流层中下层侵入,形成高空露点锋,触发有组织的中α尺度对流系统;在冷涡消亡期,低涡减弱为高空槽并快速东移,其后部冷空气置于低层大范围暖湿空气之上,地面中尺度辐合触发不稳定能量释放,形成中β尺度对流系统。  相似文献   

15.
一次中亚低涡中期过程的能量学特征   总被引:3,自引:0,他引:3  
杨莲梅  张庆云 《气象学报》2014,72(1):182-190
中亚低涡是中期时间尺度(4天以上)的对流层深厚切断低压系统,也是造成新疆暴雨(雪)、持续低温天气的重要影响系统之一,对其形成、维持和减弱的能量特征还不十分清楚。利用美国国家环境预报中心/国家大气研究中心(NCEP/NCAR)2.5°×2.5°逐日再分析资料和有限区域能量循环方程,对1996年7月10—20日造成新疆区域两次暴雨过程的中亚低涡系统进行分析,以揭示低涡持续活动11天的能量循环和转换特征。分析结果表明,中亚低涡活动具有明显的阶段性能量学特征。这次低涡发展和减弱过程处于斜压不稳定状态,扰动动能来源于扰动位能的转换和区域开放边界扰动动能的输入,且两者作用相当,它们使得低涡快速发展,同时区域内部非绝热加热制造的一部分扰动有效位能向外输出,在减弱期扰动有效位能向外输出大于扰动位能的转换和区域开放边界扰动动能的输入,因此低涡逐渐减弱。低涡成熟期处于正压不稳定状态,系统内部的能量转换很小,扰动动能来自于外界扰动位能输入,支出项为向开放边界的扰动动能输出。低涡过程各个时期纬向平均动能向扰动动能的转换都很小,即正压不稳定造成的能量转换较弱。低涡活动过程中,在对流层中、高层扰动动能很强,表明中亚低涡是主要在对流层中、高层活动的天气尺度系统,低涡内部的能量转换及其与外界的能量输送主要发生在中、高层,扰动位能和扰动动能的变化很好地反映低涡的强度变化和发展阶段,且能量的垂直输送对低涡系统的发展也有一定促进作用。  相似文献   

16.
一次西南涡引发暴雨的地闪特征   总被引:2,自引:0,他引:2       下载免费PDF全文
利用高频次多普勒雷达回波资料、闪电定位仪及区域自动站资料,对2011年6月9日湖北暴雨过程的闪电特征进行分析。结果表明:MCS不同生命阶段地闪所处位置不同,正、负闪同时跃增到峰值是MCS成熟阶段的标志之一,地闪密集区和MCS中移速较快的强回波位置基本吻合,MCS强回波区域出现正、负闪和45-55 dBz回波后部区域对应较好,强降水发生在MCS成熟后趋于消亡阶段。  相似文献   

17.

东北冷涡是造成中国暖季强对流的重要天气尺度系统之一。为对比东北冷涡与不同类型强对流过程的时空关系及其环境特征差异,基于欧洲中期天气预报中心第5代大气再分析数据和中国国家气象信息中心提供的逐时大风、降水观测资料,筛选了2017—2021年4—9月东北冷涡背景下9例雷暴大风型、9例强降水型以及8例混合型强对流天气过程,通过动态合成开展了分析研究。结果表明:(1)三类强天气过程相对于冷涡的时空分布差异明显:雷暴大风型过程,超过70%的雷暴大风出现在冷涡中心的西南部或南部;而混合型过程,超过70%的大风出现在冷涡中心的东南部或南部;混合型和强降水型过程中,短时强降水均主要出现在冷涡中心南部或东南部,但后者发生在冷涡东南部的比例更高;雷暴大风型和强降水型过程主要出现在东北冷涡的发展和成熟阶段,而混合型过程主要发生在东北冷涡的成熟阶段。(2)三类强天气过程的环流形势和环境条件差异显著。雷暴大风型过程多出现在5—6月,一般对应的东北冷涡更深厚,等温线更密集,大气环境偏干,存在气温垂直递减率大和强风垂直切变条件,雷暴大风多发生在冷涡南侧的锋区附近,对流层中、高层受干冷空气控制,叠加在低层比较浅薄的暖湿空气之上有利于大气层结条件不稳定的增强,降水粒子蒸发降温形成的下沉气流和地面冷池,叠加锋区辐合更有利于形成区域性地面强风;而强降水型过程多集中在7—8月,对应的东北冷涡强度较弱,等温线较稀疏,强降水一般出现在锋前靠近暖区一侧的强层结不稳定区域内,对应水汽充沛、整层暖湿的环境条件,中低层温差较小,风垂直切变较弱。混合型过程对应的月份和冷涡强度与强降水型过程更接近,水汽、高低层温差以及风垂直切变等环境条件介于上述两类过程之间,但下沉对流有效位能在三类过程中表现为最大。总体来看,相较于中国中、低海拔地区雷暴大风和短时强降水的环境特征而言,东北冷涡背景下的强天气过程对应更强的深层风垂直切变,具有更强的天气尺度动力强迫。

  相似文献   

18.
通过等熵位涡和热力学能量方程的各项诊断对2018年1月上旬我国东部一次寒潮天气过程进行分析,重点给出垂直运动在寒潮降温中的作用。结果表明:此次寒潮天气过程主要受蒙古国南部的横槽转竖影响,巴尔喀什湖东部和西伯利亚地区及其北部为引起这次寒潮的主要冷空气源地。欧亚大陆北部和极区对流层高层和平流层低层的高位涡强冷空气沿着等熵面向南向下平流,引导强冷空气侵袭我国东部。等熵位涡大值区的东侧对应上升运动区,有利于降水的产生。寒潮期间风场平流引起的850 hPa强降温区主要位于东南沿海地区,降温幅度最高可达6×10-4 K·s-1,而东北地区在整个寒潮期间冷平流强度较弱,最大降温幅度仅约为1×10-4 K·s-1。通过计算东南沿海和东北地区区域平均风场平流和垂直运动引起850 hPa温度变化,得出寒潮期间两地的温度总降幅约为1×10-4 K·s-1。东南沿海地区的寒潮主要由风场的冷平流引起,而东北地区则是由冷平流和垂直上升运动的共同作用引起。垂直方向上,东北地区冷空气能影响的高度要远高于东南沿海地区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号