首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic-rich (18.2%) Monterey Formation diatomite from California was studied. The organic matter consist of 94% bitumen and 6% kerogen. Biological markers from the bitumen and from pyrolysates of the coexisting asphaltenes and kerogen were analyzed in order to elucidate the relationship between the various fractions of the organic matter. While 17 alpha(H), 18 alpha(H), 21 alpha(H)-28,30-bisnorhopane was present in the bitumen and in the pryolysate of the asphaltenes, it was not detected in the pyrolysates of the kerogen. A C40-isoprenoid with "head to head" linkage, however, was present in pyrolysates of both kerogen and asphaltenes, but not in the bitumen from the diatomite. The maturation level of the bitumen, based on the extent of isomerization of steranes and hopanes, was that of a mature oil, whereas the pyrolysate from the kerogen showed a considerably lower maturation level. These relationships indicate that the bitumen may not be indigenous to the diatomite and that it is a mature oil that migrated into the rock. We consider the possibility, however, that some of the 28,30-bisnorhopane-rich Monterey Formation oils have not been generated through thermal degradation of kerogen, but have been expelled from the source rock at an early stage of diagenesis.  相似文献   

2.
Hydrous pyrolysis (HP) experiments were used to investigate the petroleum composition and quality of petroleum generated from a Brazilian lacustrine source rock containing Type I kerogen with increasing thermal maturity. The tested sample was of Aptian age from the Araripe Basin (NE-Brazil). The temperatures (280–360 °C) and times (12–132 h) employed in the experiments simulated petroleum generation and expulsion (i.e., oil window) prior to secondary gas generation from the cracking of oil. Results show that similar to other oil prone source rocks, kerogen initially decomposes in part to a polar rich bitumen, which decomposes in part to hydrocarbon rich oil. These two overall reactions overlap with one another and have been recognized in oil shale retorting and natural petroleum generation. During bitumen decomposition to oil, some of the bitumen is converted to pyrobitumen, which results in an increase in the apparent kerogen (i.e., insoluble carbon) content with increasing maturation.The petroleum composition and its quality (i.e., API gravity, gas/oil ratio, C15+ fractions, alkane distribution, and sulfur content) are affected by thermal maturation within the oil window. API gravity, C15+ fractions and gas/oil ratios generated by HP are similar to those of natural petroleum considered to be sourced from similar Brazilian lacustrine source rocks with Type I kerogen of Lower Cretaceous age. API gravity of the HP expelled oils shows a complex relationship with increasing thermal maturation that is most influenced by the expulsion of asphaltenes. C15+ fractions (i.e., saturates, aromatics, resins and asphaltenes) show that expelled oils and bitumen are compositionally separate organic phases with no overlap in composition. Gas/oil ratios (GOR) initially decrease from 508–131 m3/m3 during bitumen generation and remain essentially constant (81–84 m3/m3) to the end of oil generation. This constancy in GOR is different from the continuous increase through the oil window observed in anhydrous pyrolysis experiments. Alkane distributions of the HP expelled oils are similar to those of natural crude oils considered to be sourced from similar Brazilian lacustrine source rocks with Type I kerogen of Lower Cretaceous age. Isoprenoid and n-alkane ratios (i.e., pristane/n-C17 and phytane/n-C18) decrease with increasing thermal maturity as observed in natural crude oils. Pristane/phytane ratios remain constant with increasing thermal maturity through the oil window, with ratios being slightly higher in the expelled oils relative to those in the bitumen. Generated hydrocarbon gases are similar to natural gases associated with crude oils considered to be sourced from similar Brazilian lacustrine source rocks with Type I kerogen of Lower Cretaceous, with the exception of elevated ethane contents. The general overall agreement in composition of natural and hydrous pyrolysis petroleum of lacustrine source rocks observed in this study supports the utility of HP to better characterize petroleum systems and the effects of maturation and expulsion on petroleum composition and quality.  相似文献   

3.
The major steranes of the non-asphaltene fraction of Nigerian tar sand bitumen (maltene) are the c27-c29 diasteranes [13β(H),17α(H); 20R + S] and C28-C29 regular steranes [14β (H),17β (H); 20S]. The reducing metal reaction products of the corresponding asphaltenes (maltene-I) contain mainly C27-C29 regular steranes with the 14β(H),17β(H); 20R + S and 14α(H),17α(H); 20R + S configurations as well as the corresponding diasteranes having the 13β(H),17α(H); 20R + S configuration. These sterane distributions suggest that maltene-I corresponds to an unaltered oil whilst the maltene is equivalent to the product of severe biodegradation of maltene-I. This is consistent with maltene-I being the remnant of “original oil” trapped within the asphaltene matrix and protected from the effect of in-reservior biodégradation.Degradation of Nigerian asphaltenes by refluxing with ferric chloride-acetic anhydride or methanolic potassium hydroxide also releases soluble reaction products having the characteristics of unaltered oil such as the presence of n-alkanes having an unbiased distribution. These methods appear to be milder and more suitable than reducing metal reactions for releasing hydrocarbons occluded by asphaltenes.  相似文献   

4.
Various bituminous artifacts were excavated from the Tall-e Abu Chizan, a late prehistoric (Middle Susiana to Middle Uruk) settlement on the middle of the Curvy plain, between the Karun River and the Ram Hormoz Plain. All samples dated from the Vth millennium BC and cover three periods: 5000–4700 BC (Late Middle Susiana), 4700–4200 BC (Late Susiana 1) and 4200–3900 BC (Late Susiana 2). The bitumens were studied using the techniques of petroleum geochemistry and were compared both to the unaltered crude oils produced from the main oil fields in the area and to the famous Mamatain oil seeps. All samples are very rich in bitumen (average 46 wt%) which has been biodegraded and oxidized. Despite these alteration phenomena, δ13C of asphaltenes occur within a narrow range of less than 1‰ PDB. Biodegradation affected the steranes, terpanes, dibenzothiophenes and mono- and triaromatic steroids. Molecular characteristics of terpanes, especially the occurrence of 18α (H)-oleanane, suggest that the bitumen from Tall-e Abu Chizan is a mixture generated from Cretaceous Kazdhumi and Eocene Pabdeh petroleum source rocks. In that respect, bitumens from Tall-e Abu Chizan belong to the same oil family as oil from the Naft Safid field, which is in the vicinity of the archaeological site. In fact, the bitumen at Tall-e Abu Chizan likely originated from oil seepages at Naft Safid. These oil seeps have not yet been sampled or analysed.  相似文献   

5.
Since many immature oils have been found in a number of Tertiary basins of China, a series of cores (Oligocene) and several immature rocks after thermal simulation have been investigated for their biomarker distributions by GC and GC-MS. The presence of biomarkers in the cores seem to follow a rule of less to greater stability of hopenes, ββ-hopanes, diasterenes with increasing the depth of cores, and subsequently the 22R, 22S configuration of hopanes reaches equilibrium. The thermal simulation experiments with immature rocks demonstrated that it is possible to generate some immature oils from immature rocks during the diagenesis stage. The tricyclic terpanes generated from source rocks during diagenesis stage tended to be enriched in the oils compared to their source rocks and the relative abundance of lower molecular weight tricyclic terpanes to their higher molecular weight homologues may be useful for the subdivision of diagenesis.  相似文献   

6.
The paper presents data on the composition of biomarkers from bitumen extracts and the chemical structure of kerogen from Corg-rich sedimentary rocks before and after hydrothermal treatment in an autoclave at 300°C. Samples selected for this study are kukersite and Ordovician Dictyonema shale from the Baltics, Domanik oil shale from the Ukhta region, Upper Permian brown coal from the Pre-Ural foredeep, carbonaceous shale from the Oxfordian horizon of the Russian plate, and Upper Jurassic oil shales from the Sysola oil shale bearing region. The rocks contain type I, II, III, and II-S kerogens. The highest yield of extractable bitumen is achieved for Type II-S kerogen, whereas Type III kerogen produces the lowest amount of bitumen. The stages of organic matter thermal maturation achieved during the experiments correspond to a transition from PC2–3 to MC1–2. The 13C NMR data on kerogen indicate that the aromatic structures of geopolymers underwent significant changes.  相似文献   

7.
Steranes and triterpanes generated from pyrolysis of immature Monterey Formation kerogen in the presence and absence of calcite, illite and montmorillonite reveal results that are both consistent and divergent with published data that reflect the use of these biological markers as maturation indicators. The extent of isomerization of biomarkers generated from pyrolysis of kerogen at 300°C for 2 hours, at C-20 in 14α(H),17α(H)-steranes, at C-22 in 17α(H),21β(H)-hopanes and of 17β(H),21β(H)-hopanes correspond to early diagenetic stages in rock extracts from sedimentary basins. Isomerization increases with heating time and, after 1000 hours, attains values which correspond to the catagenetic stage in sedimentary basins, or equivalent to that of mature oil. Stepwise pyrolysis of the kerogen indicates faster isomerization rates for steranes and triterpanes in the bitumen than for those retained in the kerogen structure, confirming earlier studies.Presence of a mineral matrix can influence the isomerization of steranes and triterpanes considerably. Comparisons with results from kerogen heated alone, for a given maturation stage, show that calcite inhibits, illite catalyzes slightly and montmorillonite has a pronounced catalytic effect on these reactions. This effect results in early isomerization of steranes and hopanes corresponding to the catagenetic stage in the presence of montmorillonite, while kerogen or kerogen with calcite held at the same temperature (300°C) and time (10 hours) only yield isomerized products which correspond to a diagenetic stage. Further, illite and montmorillonite affect various isomerization reactions differently. The fastest reaction is the isomerization at C-20 in 14α(H),17α(H)-steranes followed by that at C-22 in 17α(H),21β(H)-hopanes and the slowest is the formation of 14β(H),17β(H) steranes.These results show that maturation measurements of rock or oil samples from sedimentary basins which use biological markers have to take into account the mineral matrix effects, which have been largely ignored until present.  相似文献   

8.
《International Geology Review》2012,54(10):1225-1226
Thermal karst, exposed in mine shafts, has been significantly developed in the commercial stratum of oil shales. Geochemical investigations in this karst have for the first time established the secondary changes in the kerogen of the oil shales, namely, an anomalous content of bituminoid A + C, the presence of processes of aromatization, the significant amount of hydrocarbon compounds and humic acids, and changes in the elemental composition of the residual organic matter (in particular, an increase in the C/H ratio). The secondary changes suggest that a favorable geochemical and thermobaric environment existed in the thermal karst for intense bitumen formation. The results obtained are of interest in the study of the kerogen of oil shales as a possible parental source for oil and gas. —Authors.  相似文献   

9.
Anhydrous non-isothermal heating experiments were conducted under controlled compressive stress on cylindrical plugs of six oil shales from Permian through Eocene age. The objective of this study was to compare the distribution of acyclic paraffins in initial, residual and expelled organic matter and to highlight causes of compositional differences resulting from expulsion. Pristane generation from kerogen is highest in the Eocene Messel shale and affects the pristane / phytane (pr / ph) ratio commonly used as a redox proxy. The isoprenoid to n-alkane ratios (pr / n-C17, ph / n-C18) decrease during generation and are lowest in the residual bitumen due to preferential generation and retention of n-alkanes. The n-alkane distribution shows that only lacustrine shales produce high wax oils. Evaporative fractionation leads to loss of n-alkanes up to n-C20 with boiling points below 350 °C. This demonstrates that lacustrine and marine shales may lead to accumulation of low wax oils due to evaporative fractionation after expulsion.  相似文献   

10.
Organic-rich from the Schei Point group (middle to late Triassic in age) and the Ringnes formation (late Jurassic) from the Sverdrup basin of the Canadian arctic archipelago have been geochemically evaluated for source rock characterization. Most samples from the Schei Point group are organic-rich (> 2% TOC and are considered as immature to mature oil-prone source rocks [kerogen types I, I–II (IIA) and II (IIA)]. These kerogen types contain abundant AOM1, AOM2 and alginite (Tasmanales, Nostocopsis, Leiosphaeridia, acritarch and dinoflagellate) with variable amounts of vitrinite, inertinite and exinite. Samples from the Ringnes formation contain dominant vitrinite and inertinite with partially oxidized AOM2, alginite and exinite forming mostly immature to mature condensate- and gas-prone source rocks [kerogen type II–III (IIB), III and a few II (IIA)]. Schei Point samples contain higher bitumen extract, saturate hydrocarbons and saturate/ aromatic ratio than the Ringnes samples. Triterpane and sterane (dominant C30) distribution patterns and stable carbon isotope of bitumen and kerogen suggest that the analyzed samples from the Schei Point group are at the onset of oil generation and contain a mixture of sapropelic (algal) and minor terrestrial humic organic matter. Sterane carbon number distributions in the Ringnes formation also suggest a mixed algal and terrestrial organic matter type. There are some variations in hopane carbon number distributions, but these are apparently a function of thermal maturity rather than significant genetic differences among samples. Pyrolysis-gas chromatography/mass spectrometry of the two samples with similar maturity shows that the Schei Point sample generates three times more pyrolyzate than the Ringnes sample. Both samples have a dominant aliphatic character, although the Ringnes sample contains phenol and an aromaticity that is higher than that of the Schei Point sample.  相似文献   

11.
The Menilite Shales (Oligocene) of the Polish Carpathians are the source of low-sulfur oils in the thrust belt and some high-sulfur oils in the Carpathian Foredeep. These oil occurrences indicate that the high-sulfur oils in the Foredeep were generated and expelled before major thrusting and the low-sulfur oils in the thrust belt were generated and expelled during or after major thrusting. Two distinct organic facies have been observed in the Menilite Shales. One organic facies has a high clastic sediment input and contains Type-II kerogen. The other organic facies has a lower clastic sediment input and contains Type-IIS kerogen. Representative samples of both organic facies were used to determine kinetic parameters for immiscible oil generation by isothermal hydrous pyrolysis and S2 generation by non-isothermal open-system pyrolysis. The derived kinetic parameters showed that timing of S2 generation was not as different between the Type-IIS and -II kerogen based on open-system pyrolysis as compared with immiscible oil generation based on hydrous pyrolysis. Applying these kinetic parameters to a burial history in the Skole unit showed that some expelled oil would have been generated from the organic facies with Type-IIS kerogen before major thrusting with the hydrous-pyrolysis kinetic parameters but not with the open-system pyrolysis kinetic parameters. The inability of open-system pyrolysis to determine earlier petroleum generation from Type-IIS kerogen is attributed to the large polar-rich bitumen component in S2 generation, rapid loss of sulfur free-radical initiators in the open system, and diminished radical selectivity and rate constant differences at higher temperatures. Hydrous-pyrolysis kinetic parameters are determined in the presence of water at lower temperatures in a closed system, which allows differentiation of bitumen and oil generation, interaction of free-radical initiators, greater radical selectivity, and more distinguishable rate constants as would occur during natural maturation. Kinetic parameters derived from hydrous pyrolysis show good correlations with one another (compensation effect) and kerogen organic-sulfur contents. These correlations allow for indirect determination of hydrous-pyrolysis kinetic parameters on the basis of the organic-sulfur mole fraction of an immature Type-II or -IIS kerogen.  相似文献   

12.
Four shallow boreholes were drilled in the Hils syncline, northern Germany, in order to determine quantitatively the amount of hydrocarbons generated and expelled during maturation of a typical kerogen-type-II-bearing source rock. The holes penetrated the carbonceous Lias shales (Posidonia shale, Lower Toarcian) and part of the adjacent Dogger α and Lias δ mudstones. The maturity of the organic matter in the cores recovered ranges from immature (0.48% R̄0) to overmature 1.45% R̄0) due to location of the Hils syncline in the vicinity of the Vlotho Massif, which is deep-seated intrusive body. Facies variations of the Lias within the short geographical distances in the study area are negligible.Organic matter mass balance calculations were based on detailed organic geochemical analyses of residual material in the Lias shales (kerogen, bitumen etc.) and on the evidence of a uniform initial composition of these sediments in the study area. Dead carbon determinations supported this latter criterion but were not used as a parameter in the calculations.About 50% of the initial kerogen was transformed into oil, gas and inorganic compounds during the vitrinite reflectance increase from 0.48 to 0.88% R̄o and only marginally more during the maturity increase from 0.88 to 1.45% R̄o. Only a small portion of the generated material remained in the source rock even at a relatively early stage of generation (0.68% R̄o). Expulsion efficiency of oil plus gas reached a value of 86% at the end of the main generation stage (0.88% R̄o).  相似文献   

13.
泥灰岩的生、排烃模拟实验研究   总被引:5,自引:1,他引:5  
本文采用加水热模拟实验方法对东濮凹陷卫城地区下第三系低熟泥灰岩进行了生、排烃模拟实验研究,重点分析了液态产物(热解油、沥青A、沥青C)的特征及演化规律。热解油中轻质烃(C6-C14)占有重要的地位,其相对含量随演化程度的增高变化特征是从大到小然后再增大,轻质烃的准确定量为评价泥灰岩的生油量提供了重要参数;热解油、沥青A、沥表C三者的产率及组成变化的对比研究反映了泥灰岩(碳酸盐岩)中不同赋存状态有机质对成烃的贡献以及排烃机制。  相似文献   

14.
A series of biomarkers is used to explore the bio-inputs of source rocks and oils. Oils from the Dongtai sag of the Subei Basirr are characterized by abundant gammacerane and 4-methyl steranes. Both Ef4 and Ef2 source shales contain type-II1 kerogen. Ef4 is different from Ef2 in biomarker distribution and generated oil. The former has higher Pr/Ph and 4-methyl sterane/sterane ratios, but the latter has more abundant β-carotane. The presence of immature oils and source rocks in the Hai’an depression indicates that the immature oils are of commercial value.  相似文献   

15.
The wide existence of immature oils throughout the world especially in China broke through the hydrocarbon generation theory through kerogen thermal degradation. Studies have shown that soluble and insoluble organic matter are organically connected in the sedimentary rock, both contributing to hydrocarbon generation. In the diagenesis,kerogen can not produce oils, so immature oils derive directly from the soluble lipids. Hydrocarbon generation process through kerogen thermal degradation takes place mainly in the early catagenesis(R o= 0.2% ~1.2%), and the oils generated are normal. In the late catagenesis, hydrocarbon generation comes into wet gas stage(R o=1.2%~2.0%), with pyrrobitumen degenerating into high mature light oils and oils cracking into gases. In this paper,the author presented a new generating hydrocarbon and evolutionary model with soluble and insoluble organic matter both contributing to the generation of hydrocarbon.  相似文献   

16.
Hydrous and anhydrous closed-system pyrolysis experiments were conducted on a sample of Mahogany oil shale (Eocene Green River Formation) containing Type-I kerogen to determine whether the role of water had the same effect on petroleum generation as reported for Type-II kerogen in the Woodford Shale. The experiments were conducted at 330 and 350 °C for 72 h to determine the effects of water during kerogen decomposition to polar-rich bitumen and subsequent bitumen decomposition to hydrocarbon-rich oil. The results showed that the role of water was more significant in bitumen decomposition to oil at 350 °C than in kerogen decomposition to bitumen at 330 °C. At 350 °C, the hydrous experiment generated 29% more total hydrocarbon product and 33% more C15+ hydrocarbons than the anhydrous experiment. This is attributed to water dissolved in the bitumen serving as a source of hydrogen to enhance thermal cracking and facilitate the expulsion of immiscible oil. In the absence of water, cross linking is enhanced in the confines of the rock, resulting in formation of pyrobitumen and molecular hydrogen. These differences are also reflected in the color and texture of the recovered rock. Despite confining liquid-water pressure being 7-9 times greater in the hydrous experiments than the confining vapor pressure in the anhydrous experiments, recovered rock from the former had a lighter color and expansion fractures parallel to the bedding fabric of the rock. The absence of these open tensile fractures in the recovered rock from the anhydrous experiments indicates that water promotes net-volume increase reactions like thermal cracking over net-volume decrease reactions like cross linking, which results in pyrobitumen. The results indicate the role of water in hydrocarbon and petroleum formation from Type-I kerogen is significant, as reported for Type-II kerogen.  相似文献   

17.
Hydrous pyrolysis experiments at 200 to 365°C were carried out on a thermally immature organic-rich limestone containing Type-IIS kerogen from the Ghareb Limestone in North Negev, Israel. This work focuses on the thermal behavior of both organic and inorganic sulfur species and the partitioning of their stable sulfur isotopes among organic and inorganic phases generated during hydrous pyrolyses. Most of the sulfur in the rock (85%) is organic sulfur. The most dominant sulfur transformation is cleavage of organic-bound sulfur to form H2S(gas). Up to 70% of this organic sulfur is released as H2S(gas) that is isotopically lighter than the sulfur in the kerogen. Organic sulfur is enriched by up to 2‰ in 34S during thermal maturation compared with the initial δ34S values. The δ34S values of the three main organic fractions (kerogen, bitumen and expelled oil) are within 1‰ of one another. No thermochemical sulfate reduction or sulfate formation was observed during the experiments. The early released sulfur reacted with available iron to form secondary pyrite and is the most 34S depleted phase, which is 21‰ lighter than the bulk organic sulfur. The large isotopic fractionation for the early formed H2S is a result of the system not being in equilibrium. As partial pressure of H2S(gas) increases, retro reactions with the organic sulfur in the closed system may cause isotope exchange and isotopic homogenization. Part of the δ34S-enriched secondary pyrite decomposes above 300°C resulting in a corresponding decrease in the δ34S of the remaining pyrite. These results are relevant to interpreting thermal maturation processes and their effect on kerogen-oil-H2S-pyrite correlations. In particular, the use of pyrite-kerogen δ34S relations in reconstructing diagenetic conditions of thermally mature rocks is questionable because formation of secondary pyrite during thermal maturation can mask the isotopic signature and quantity of the original diagenetic pyrite. The main transformations of kerogen to bitumen and bitumen to oil can be recorded by using both sulfur content and δ34S of each phase including the H2S(gas). H2S generated in association with oil should be isotopically lighter or similar to oil. It is concluded that small isotopic differentiation obtained between organic and inorganic sulfur species suggests closed-system conditions. Conversely, open-system conditions may cause significant isotopic discrimination between the oil and its source kerogen. The magnitude of this discrimination is suggested to be highly dependent on the availability of iron in a source rock resulting in secondary formation of pyrite.  相似文献   

18.
Compound-specific stable carbon isotope (δ ) measurements on the aliphatic hydrocarbons released from an immature Tertiary oil shale (Göynük, Turkey) via hydropyrolysis, following solvent extraction and a milder hydrogenation treatment, have further highlighted that significant compositional differences may exist between the principal aliphatic constituents of the solvent extractable (bitumen) phase and the insoluble macromolecular network (kerogen) comprising the bulk of sedimentary organic matter. Whilst inputs from diverse sources; including algae, bacteria and terrestrial higher plants, were implied from analysis of solvent-extractable alkanes, the much larger quantities of kerogen-bound n-alkyl constituents released by hydropyrolysis had a uniform isotopic signature which could be assigned to (freshwater) algae. Remarkably, the aliphatics bound to the kerogen by relatively weak covalent bonds, liberated via catalytic hydrogenation, appeared to comprise mainly allochthonous higher plant-derived n-alkanes. These results provide further compelling evidence that the molecular constituents of bitumen and, indeed, of low-yield kerogen degradation products, are not necessarily reliable indicators of kerogen biogenicity, particularly for immature Type I source rocks. The isotopic uniformity of aliphatic n-hydrocarbons released by the high-conversion hydropyrolysis step for the ultralaminae-rich Göynük oil shale, lends further support to the theory that selective preservation of highly resistant aliphatic biomacromolecules is an important mechanism in kerogen formation, at least for alginite.  相似文献   

19.
The objective of the present paper is to provide geochemical and palynological data to characterize lignites and carbonaceous shales from Panandhro, northwestern Kutch Basin, Gujarat, Western India, in terms of their hydrocarbon potential, thermal maturity, sequence stratigraphic settings and depositional palaeoenvironment. The samples, collected in Panandhro lignite mine, belong to Naredi Formation of Late Paleocene-Early Eocene age. The geochemical results are based on proximate analysis, ultimate analysis, X-ray diffraction and Rock-Eval py-rolysis analyses, whereas palynological data include palynofossil composition and thermal alteration index (TAI). The TOC, hydrogen index (HI), cracked hydrocarbon (S2), bitumen index (BI), quality index (QI), and the total genetic potential (S1+S2) values indicate that the studied lignites and carbonaceous shales have good source rock potential. The organic matter is predominantly of type II and type II/III kerogen, which has potential to generate oil as well as gas. Thermal maturity determined from thermal alteration index (TAI), T max and production index (PI) indicates that the organic matter is immature, and in the diagenesis stage of organic matter transformation. The deposition of the studied carbonaceous shales and lignites took place in palaeoenvironments varying from brackish mangrove to freshwater swamp. This study indicates that the proportion of ferns, palms, volatile matter content, S/C, H/C ratios, as well as the presence of siderite and quartz can be used as an indicator of accommodation trends in the coal depositional system. The Panandhro carbonaceous shales and lignites were deposited during the lowstand systems tract with many cycles of small magnitude trangressive-regressive phases. Thus, the geochemistry and ecological palynology are useful not only for the investigation of coal quality and origin, but also to infer accommodation space settings of the mire. This can be gainfully utilized in the coal industry for coal mine planning, development and exploitation, because of the predictive ability to infer changes in stratigraphy and coal quality.  相似文献   

20.
Asphaltenes extracted from crude oils are proposed to possess structural features of the related source rock kerogen. For the present study micro-scale sealed vessel pyrolysis (MSSV) and combustion isotope ratio mass spectrometry (GC–C–IRMS) were used to compare gas generation from a whole rock (type II-S kerogen) from southern Italy with that from related sulfur rich asphaltenes isolated from a low maturity heavy crude oil. The purpose of was to determine whether experimental pyrolysis of oil asphaltenes can be used to predict the timing and the chemical and isotopic composition of hydrocarbon gases generated from genetically related kerogen in the source rock during burial maturation. The results show that parameters such as (gas to oil ratio) GOR and oil and gas formation timing are very similar for these two sample types, whereas gas composition, product aromaticity and sulfur content are remarkably different. Slight differences in GOR are mainly due to differences in gas formation characteristics at very high levels of thermal alteration. Secondary gas formation from the whole rock covers a much broader temperature range under geological conditions than that from the asphaltene products. However, it is remarkable that both the onset and the maximum temperature are nearly identical under geological conditions. The observed differences in gas generation characteristics are supported by discrepancies in the carbon isotopic characteristics of the gas range compounds and indicate different precursors and/or mechanisms for gas generated from whole rock and asphaltenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号