首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To help understand factors that influence submarine fan deposition, we outline some of the principal sedimentary, tectonic, and sea-level controls involved in deep-water sedimentation, give some data on the rates at which they operate, and evaluate their probable effects. Three depositional end-member systems, two submarine fan types (elongate and radial), and a third nonfan, slope-apron system result primarily from variations in sediment type and supply. Tectonic setting and local and global sea-level changes further modify the nature of fan growth, the distribution of facies, and the resulting vertical stratigraphic sequences.  相似文献   

2.
Monterey Fan is the largest modern fan off the California shore. Two main submarine canyon systems feed it via a complex pattern of fan valleys and channels. The northern Ascension Canyon system is relatively inactive during high sea-level periods. In contrast, Monterey Canyon and its tributaries to the south cut across the shelf and remain active during high sea level. Deposition on the upper fan is controlled primarily by the relative activity within these two canyon systems. Deposition over the rest of the fan is controlled by the oceanic crust topography, resulting in an irregular fan shape and periodic major shifts in the locus of deposition. Margin setting represents fan and/or source area  相似文献   

3.
Blanca fan is a submarine fan composed of Miocene volcaniclastic strata. Parts of the fan system are exposed on Santa Cruz and Santa Rosa Islands, and possibly correlative strata crop out on San Miguel and Santa Catalina Islands. The Blanca fan and underlying breccia reflect regional transcurrent faulting in the California Continental Borderland and development of a system of rapidly subsiding basins and uplifted linear ridges during early and middle Miocene time. Erosion of uplifted crystalline basement rocks followed by the onset of silicic volcanism created linear sediment sources for the alluvial and submarine fans, respectively. Margin setting represents fan and/or source area  相似文献   

4.
Bengal Submarine Fan, with or without its eastern lobe, the Nicobar Fan, is the largest submarine fan known. Most of its sediment has been supplied by the Ganges and Brahmaputra Rivers, probably since the Early Eocene. The “Swatch-of-No-Ground” submarine canyon connects to only one active fan valley system at a time, without apprent bifurcation over its 2500-km length. The upper fan is comprised of a complex of huge channel-levee wedges of abandoned and buried older systems. A reduction of channel size and morphology occurs at the top of the middle, fan, where meandering and sheet flow become more important. Margin setting represents fan and/or source area  相似文献   

5.
Sagami Bay is a deep-water foreland basin with an average sedimentary rate of approximately 0.1 g/cm2/year. It is an appropriate area to study for better understanding of sedimentary processes in a setting with a high sedimentation rate. Seven multiple core samples, 30-50 cm thick, were obtained from Sagami Bay. Four of the core samples were taken from the Tokyo submarine fan system (Tokyo canyon floor, Tokyo fan valley and its levee, the distal fan margin). Two samples were obtained from the Sakawa fan delta and the adjacent topographic high. The remaining one was from an escarpment of the Sagami submarine fault. Variations in chemical composition can be recognized at every coring site. They show two different sediment sources: the sediments of the Tokyo submarine fan system and those from Sakawa fan delta. Further, there are differences in chemical composition between canyon floor and levees even within the Tokyo submarine fan system. The results suggest that the sedimentary process is strongly controlled not by vertical particle settling but by a hyperpycnal flow process. The proxies obtained from the core samples do not reflect conditions in the water column immediately overlying the sea floor. Rather, they are controlled by conditions on the adjacent continental shelf or/and shallow basins, which are the areas of primary accumulation.  相似文献   

6.
The Eocene Butano Sandstone was deposited as a submarine fan in a relatively small, partly restricted basin in a borderland setting. It is possibly as thick as 3000 m and was derived from erosion of nearly Mesozoic granitic and older metamorphic rocks located to the south. Deposition was at lower bathyal to abyssal water depths. The original fan may have been 120-to 160-km long and 80-km wide. Outcrops of submarine-canyon, innerfan, middle-fan, and outer-fan facies associations indicate that the depositional model of Mutti and Ricci Lucchi can be used to describe the Butano Sandstone. Margin setting represents fan and/or source area  相似文献   

7.
Monterey Fan is the largest modern fan off the California shore. Two main submarine canyon systems feed it via a complex pattern of fan valleys and channels. The northern Ascension Canyon system is relatively inactive during high sea-level periods. In contrast, Monterey Canyon and its tributaries to the south cut across the shelf and remain active during high sea level. Deposition on the upper fan is controlled primarily by the relative activity within these two canyon systems. Deposition over the rest of the fan is controlled by the oceanic crust topography, resulting in an irregular fan shape and periodic major shifts in the locus of deposition.  相似文献   

8.
The Cengio sandstone member of the Tertiary Piedmont Basin in northwestern Italy has a conservatively estimated volume of 2.5 to 3 km3 (length: 6.4 km; width: 4.8 km; thickness: 170 m). It is interpreted as a sandstone-rich submarine fan deposit. The Cengio member consists of eight tabular depositional sandstone lobes that are 5- to 25-m thick. These lobes filled a submarine structural depression and onlap and/or pinch-out against bounding slope mudstones. The stacking of the lobe units was related to synsedimentary tectonism. Margin setting represents fan and/or source area  相似文献   

9.
The Eocene Hecho Group submarine-fan and basin-plain turbidites fill an elongate basin in the south-central Pyrenees that was tectonically active during deposition. The total volume of these sediments is about 21,000 to 26,000 km3. The bulk of the sand by-passed the fan-channel zone and was deposited in the lobe and fan-fringe environments. The stratigraphically lower part of the Hecho submarine fan was deposited during relative lowering of sea level. Margin setting represents fan and/or source area  相似文献   

10.
Remnants of an Eocene fan system are preserved onshore at San Diego and in the central part of the southern California borderland. Even though faults and erosion have truncated its margins, geophysical data and exploratory wells indicate that remaining parts of the fan extend beneath an offshore area nearly 400-km long and 40- to 100-km wide. Environments representing fluvial, fan-delta, shelf-channel, overlapping inner- to outer-fan, and basin-plain facies are recognized or inferred. Three progradational cycles onshore and two distinct pulses of sand accumulation offshore are attributable to eustatic low sea-level stands rather than to tectonic uplift or shifts in depositional patterns. Margin setting represents fan and/or source area  相似文献   

11.
The Eocene Butano Sandstone was deposited as a submarine fan in a relatively small, partly restricted basin in a borderland setting. It is possibly as thick as 3000 m and was derived from erosion of nearly Mesozoic granitic and older metamorphic rocks located to the south. Deposition was at lower bathyal to abyssal water depths. The original fan may have been 120-to 160-km long and 80-km wide. Outcrops of submarine-canyon, innerfan, middle-fan, and outer-fan facies associations indicate that the depositional model of Mutti and Ricci Lucchi can be used to describe the Butano Sandstone.  相似文献   

12.
Blanca fan is a submarine fan composed of Miocene volcaniclastic strata. Parts of the fan system are exposed on Santa Cruz and Santa Rosa Islands, and possibly correlative strata crop out on San Miguel and Santa Catalina Islands. The Blanca fan and underlying breccia reflect regional transcurrent faulting in the California Continental Borderland and development of a system of rapidly subsiding basins and uplifted linear ridges during early and middle Miocene time. Erosion of uplifted crystalline basement rocks followed by the onset of silicic volcanism created linear sediment sources for the alluvial and submarine fans, respectively.  相似文献   

13.
Submarine canyons and associated submarine fans are in some cases located at the end of a littoral cell where they act as conduits for the transfer of eroded terrigenous sediments to the marine environment. Such fans are generally found in deep-water settings at >500 m water depth. Offshore the Moisie River Delta (NW Gulf of St. Lawrence, Eastern Canada), high-resolution multibeam bathymetry and seismic data led to the discovery of an unusually shallow submarine fan (≤60 m) located at the end of a littoral cell. Sediment is transported westward on the shallow coastal shelf, as demonstrated by the downcurrent displacement of oblique nearshore sandbars where the shelf narrows to less than 1 km. The steep slope near the end of the littoral cell is incised by a channel that feeds a submarine fan composed of smaller channels and depositional lobes. According to existing Holocene evolution models for the region, the fan formed within the last 5,000 years. Its evolution is largely due to the transport of sediment by longshore drift. Multibeam echosounder and seismic data also reveal that the gravity-driven accretion of the submarine fan is characterized mainly by two processes, i.e., frequent small-scale, downslope migration of sandwaves on the slope, and more episodic slumping/turbidity-current activity in the deeper part of the fan. This study documents that, besides their common deep-water location, smaller-scale submarine fans can occur also in very shallow water, implying that they could be more frequent than previously thought both in modern environments and in the rock record.  相似文献   

14.
The Bengal Fan: morphology, geometry, stratigraphy, history and processes   总被引:2,自引:0,他引:2  
The Bengal Fan is the largest submarine fan in the world, with a length of about 3000 km, a width of about 1000 km and a maximum thickness of 16.5 km. It has been formed as a direct result of the India–Asia collision and uplift of the Himalayas and the Tibetan Plateau. It is currently supplied mainly by the confluent Ganges and Brahmaputra Rivers, with smaller contributions of sediment from several other large rivers in Bangladesh and India.The sedimentary section of the fan is subdivided by seismic stratigraphy by two unconformities which have been tentatively dated as upper Miocene and lower Eocene by long correlations from DSDP Leg 22 and ODP Legs 116 and 121. The upper Miocene unconformity is the time of onset of the diffuse plate edge or intraplate deformation in the southern or lower fan. The lower Eocene unconformity, a hiatus which increases in duration down the fan, is postulated to be the time of first deposition of the fan, starting at the base of the Bangladesh slope shortly after the initial India–Asia collision.The Quaternary of the upper fan comprises a section of enormous channel-levee complexes which were built on top of the preexisting fan surface during lowered sea level by very large turbidity currents. The Quaternary section of the upper fan can be subdivided by seismic stratigraphy into four subfans, which show lateral shifting as a function of the location of the submarine canyon supplying the turbidity currents and sediments. There was probably more than one active canyon at times during the Quaternary, but each one had only one active fan valley system and subfan at any given time. The fan currently has one submarine canyon source and one active fan valley system which extends the length of the active subfan. Since the Holocene rise in sea level, however, the head of the submarine canyon lies in a mid-shelf location, and the supply of sediment to the canyon and fan valley is greatly reduced from the huge supply which had existed during Pleistocene lowered sea level. Holocene turbidity currents are small and infrequent, and the active channel is partially filled in about the middle of the fan by deposition from these small turbidity currents.Channel migration within the fan valley system occurs by avulsion only in the upper fan and in the upper middle fan in the area of highest rates of deposition. Abandoned fan valleys are filled rapidly in the upper fan, but many open abandoned fan valleys are found on the lower fan. A sequence of time of activity of the important open channels is proposed, culminating with formation of the one currently active channel at about 12,000 years BP.  相似文献   

15.
Three small turbidite systems (Almeria, Sacratif, and Guadiaro), each tens of kilometres long, are developed in the complex morpho-structural setting of the northern Alboran Sea and have similar primary architectural elements (canyons, channel-levee systems, lobes). However, comparison reveals differences in the axial gradients of their canyons, depth/physiographic location, morphological framework, and lateral and longitudinal sedimentary shifts of turbidite deposition. The depositional architecture and sedimentary evolution from late Pliocene to Quaternary seems to be conditioned by number of submarine feeding sources (canyons), sea-level fluctuations and local tectonic (e.g. margin/canyon-channel gradients, faults). We group the Alboran turbidite systems into two models: mud/sand-rich submarine point-source and mud/sand-rich multiple submarine source ramp.  相似文献   

16.
The Brae oilfield reservoir in the North Sea comprises Upper Jurassic resedimented conglomerates and sandstones interbedded with organic-rich silstone and mudstone thin-bedded turbidites. The system represents a series of small overlapping fans that form a thick (300 m) slope-apron accumulation of sediments deposited in a narrow (<10 km wide) belt along an active fault zone. The complex lateral and vertical distribution of facies was due mainly to variable tectonic activity, and partly also to sediment supply and sea-level changes. Margin setting represents fan and/or source area  相似文献   

17.
《Marine Geology》2005,219(4):207-218
A vertical succession of five composite sequences has been identified within the upper 100 m of the outer Bengal Shelf by means of high-resolution multi-channel seismic data. Each sequence consists predominantly of up to 100 km long and some 10 m thick forced regression systems tracts. The internal reflection pattern of the regressive units show mainly prograding oblique clinoforms. Intervening transgressive systems tracts are represented by seismically transparent or chaotic layers. On the outer shelf three of the sequences cause shelf aggradation and retrogradation, and two of them cause mainly shelf progradation. Based on the hierarchy of systems tracts, their calibration by comparison with eustatic sea-level curves and reconstructed paleoshoreline positions the composite sequences are interpreted as eccentricity driven eustatic 4th order (Milankovitch) cycles with a periodicity of about 100 ky. Internal unconformities mark cycles of 5th or higher order. An average subsidence of the outer shelf is estimated to be less than 0.4 mm/year during the last 345 ky. The correlation between the shelf growth pattern and sea-level fluctuations is consistent with the enhanced deposition on the eastern Bengal submarine fan from 465 to 125 ky B.P., as was observed by other authors.  相似文献   

18.
The Torlesse terrane of New Zealand is an ancient subduction complex consisting of deformed turbidite-facies rocks. These are mainly thick-bedded sandstone (facies B and C) with subordinate mudstone (facies D and E), comparable to inner- and middle-fan deposits of a submarine fan. Strata were deposited in trench-floor and trench-slope settings that received sandy sediment from slope-cutting submarine canyons. The dominance of sandstone suggests that some mudstone may have been selectively subducted. Construction of a detailed sediment dispersal model is not possible because tectonic deformation has largely destroyed original facies relationships and paleocurrent patterns.  相似文献   

19.
Submarine slope processes on a fan delta,Howe Sound,British Columbia   总被引:1,自引:0,他引:1  
Modern side-scan sonar technology was used to resurvey the site of the Howe Sound submarine slide described by Terzaghi. Chutes, hummocky topography, and subparallel scarps indicative of submarine mass movement are widespread. Submarine slope processes appear to be far more important to the development of this coarsegrained fan delta than suspected.  相似文献   

20.
Bengal Submarine Fan, with or without its eastern lobe, the Nicobar Fan, is the largest submarine fan known. Most of its sediment has been supplied by the Ganges and Brahmaputra Rivers, probably since the Early Eocene. The “Swatch-of-No-Ground” submarine canyon connects to only one active fan valley system at a time, without apprent bifurcation over its 2500-km length. The upper fan is comprised of a complex of huge channel-levee wedges of abandoned and buried older systems. A reduction of channel size and morphology occurs at the top of the middle, fan, where meandering and sheet flow become more important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号