首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Reliability Assessment of Reddish Brown Tropical Soil as a Liner Material   总被引:1,自引:0,他引:1  
The use of first order reliability method to assess reddish brown tropical soils as potential materials for liners and covers was studied. A procedure was developed by studying the effects of compactive effort, coefficient of variation and compositional variables like initial saturation, plasticity index and clay content on reliability indices. Three compactive efforts namely British Standard Light (BSL), West African Standard (WAS), British Standard Heavy (BSH) were employed. The F-values of the treatment for the various variables has the highest value for hydraulic conductivity (F = 178), followed by plasticity index (F = 83.7) while the lowest is Clay (F = 12.87). Similarly, with respect to the compactive effort, the F-value for hydraulic conductivity is highest (F = 73,358) followed by plasticity index (F = 4329.6), then clay content (F = 423.12) while the lowest is initial saturation (F = 29.78). BSH should be used in order to attain a minimum hydraulic conductivity (K ≤ 10?7 cm/s) in the field. WAS can also be used with careful control but an equivalent of BSL should never be used. Generally, the F-values for the compactive effort are higher than those of coefficient of variation, showing the superiority of compactive effort over coefficient of variation on the reliability indices. All the calculated F-values are greater than the F-critical or F-tabulated, which inferred that the effect of these variables is statistically significant. Hence, the reliability model used in this research work is suitable for stochastic modeling of reddish brown soils as suitable material for a landfill liner.  相似文献   

2.
An expansive soil (black cotton soil) treated with up to 10 % cement kiln dust (CKD), a waste obtained from the manufacture of cement, was evaluated for use as a flexible pavement construction material. Laboratory tests were carried out on specimens compacted with British Standard light, British Standard light or standard Proctor (relative compaction = 100 %) energy. Results obtained show that the index properties of the soil improved with CKD treatment. Peak unconfined compressive strength of 357.07 kN/m2 and California bearing ratio (CBR) of 7 % as well as resistance to loss in strength of 44 % were recorded at 10 % CKD treatment. Reduction in the particle sizes with curing period was observed when samples were viewed through the scanning electron microscope. The study showed that CKD can be beneficially used to improve the subgrade of lightly trafficked roads and as admixture in lime stabilization during construction of flexible pavements over expansive soil.  相似文献   

3.
In developing technically viable and economically sustainable methods of improving soil properties to suit the requirements of engineering structures, designers/engineers are to take into consideration the availability and cost effectiveness of materials required for such improvement scheme. In line with this, the present study evaluates stabilization effectiveness of combined quarry fines (QF) and cement kiln dust (CKD) on subgrades dominated by black cotton soil (BC soil). The experimental programme included Atterberg limits, compaction and California bearing ratio (CBR) tests on soil mixtures prepared with a representative BC soil at constant dosage of 10 % QF and 0, 4, 8, 12 and 16 % CKD. Prior to testing, soil mixtures for CBR test prepared at optimum moistures and compacted with British standard light compaction effort were soaked for 96 h after curing for 28 days. Test data show that the addition of QF and CKD together reduced the plasticity index that resulted in rapid textural changes and eventual improvement in constructability, led to an increase in the optimum moisture content and a decrease in the maximum dry unit weight. Furthermore, the coupled effects of QF and CKD resulted in substantial increase in CBR strength of the composite specimens. Overall, mixtures created using the proposed QF and CKD ratios rendered the soil physically and mechanically stable producing results that are compatible with desired values for engineering performance typically required by various user agencies for pavement subgrades. This improvement scheme is not only cost effective, but it is capable of lessening the demand on non renewable resources thereby reducing the footprint of road construction projects in the environment.  相似文献   

4.
Compacted soilbentonite mixtures are finding wide application as buffer material for waste repositories for their favorable self-sealing qualities. The swelling properties of such materials which serve as a measure of their self-sealing capabilities and, thus, the efficiency of the repository in sealing off their contents from the environment are closely related to the chemistry of the leachate that emanate from the wastes. For this reason, the swelling parameters (namely swelling potential and pressure) of compacted lateritic soil–bentonite mixtures under consideration for use as barrier in municipal waste landfill were evaluated. Series of swelling potential and pressure tests were performed using variable content (0–10 %) of bentonite at predetermined optimum moisture content. Soil mixtures were compacted with British Standard Heavy compactive effort and saturated with processed tap water as well as three leachate solutions of varying ionic strength that were generated in active open dump landfills. Experimental results showed that swelling potential based on the free swell together with the maximum swell pressures of compacted soil mixtures measured at equilibrium increased approximately linearly with increase in the amount of bentonite when inundated with processed tap water and the three leachate solutions. On the other hand, these swelling parameters decreased as the ionic strength of the leachate solutions measured by their electrical conductivity increased for the various soil mixtures. These results provide an insight into the swelling behavior and the possible degradation in the efficiency of the proposed lateritic soil–bentonite mixtures in relation to their use as buffer material in waste landfills.  相似文献   

5.
In recent years, geotechnical engineers are using tyre waste to alter the properties of soil for providing sustainable solutions to complex engineering problems. It is noted that black cotton soil, which is expansive in nature, covers a major portion of the Indian sub-continent, such as the Deccan plateau, Malwa plateau and a portion of Gujarat and poses challenging problems to infrastructural development in the region. In the present study, authors have characterised the geotechnical properties of black cotton soil, which is partially replaced with 4.75 mm passing – 2 mm retained (coarse fraction) and 2.0 mm passing - 75 micron retained (fine fraction) shredded tyre waste. The results of the experimental studies clearly show that partial replacement of black cotton soil with shredded tyre waste alters the geotechnical properties favourable to engineering applications and greatly reduces the swelling potential of the black cotton soil. It is noted that instead of fine fraction (2.0–0.075 mm), replacement with coarse fraction (4.75–2.00 mm) of shredded tyre waste can better be used for light weight fill behind the retaining walls as well as for embankment construction as it helps in reducing swelling pressure as well as improving the strength properties.  相似文献   

6.
This study evaluates the applicability of residually derived lateritic soil stabilized with cement kiln dust (CKD), a waste product from the cement manufacturing process as liner in waste repositories. Lateritic soil sample mixed with 0–16 % CKD (by dry weight of the soil) was compacted with the British Standard Light, West African Standard and British Standard Heavy compaction efforts at water contents ranging from the dry to wet of optimum moistures. Geotechnical parameters such as Atterberg limits, compaction characteristics, hydraulic conductivity, unconfined compressive strength and volumetric shrinkage strain were determined. Results indicate that the plasticity index, the maximum dry unit weight and hydraulic conductivity together with the volumetric shrinkage decreased with increased amount of CKD while the optimum moisture content and unconfined compressive strength increased with higher CKD content for all the efforts. When measured properties were compared with standard specifications adopted by most environmental regulatory agencies for the construction of barrier systems in waste containment structures, the resulting values showed substantial compliance. Besides developing an economically sustainable liner material, the present study demonstrated effective utilization of an industrial by-product otherwise considered as waste by the producers, in addition to a systematic expansion in the use of the lateritic soil for geotechnical works.  相似文献   

7.
Foundry sand, an industrial waste, was treated with up to 12 % cement kiln dust content at comparative energy levels of British standard light, West African standard or “intermediate” (WAS) and British standard heavy (BSH) efforts at molding water contents ?2, 0, 2, 4 and 6 % of optimum moisture content. Samples were extruded from the compaction molds and allowed to air dry in the laboratory in order to assess the effect of desiccation-induced shrinkage on the material for use as a hydraulic barrier in waste containment application. Results recorded show that volumetric shrinkage strain (VSS) values were large within the first 5 days of drying; VSS values increased with higher molding water content, water content relative to the optimum moisture content. VSS generally increased with higher initial degree of saturation for all compactive efforts, irrespective of the level of cement kiln dust (CKD) treatment. A compaction plane of acceptable zones for VSS based on the regulatory value is ≤4 %. The influence of CKD treatment generally showed a decrease in the desiccation-induced volumetric shrinkage strain with increasing CKD content. This is largely due to the pozzolanic input of CKD. Finally, only the BSH compactive effort gave successful results of volumetric shrinkage strain at CKD treatment content of between 4 and 8 %, while 12 % CKD content produced successful volumetric shrinkage strain results at WAS and BSH compactive effort, respectively.  相似文献   

8.
Laboratory tests were carried out on compacted granite residual soil treated with 0 to 15% Palm Oil Fuel Ash (POFA), with a view to evaluate its hydraulic conductivity for its application in landfilling. The Soil–POFA mixtures were compacted using both Standard and Modified Proctors compactive efforts at 2% dry of Optimum Moulding water Content (?2%), at Optimum Moulding water Content (0%), at 2 and 4% on the wet side of Optimum Moulding water Content (+2 and +4%). The samples were permeated with water and the effect of moulding water content; compactive effort and POFA content were examined. The samples that met the minimum threshold of 1 × 10?9 m/s were used in plotting the acceptable zones criterion at various POFA mixtures. The results gave indications of reduction in the hydraulic conductivity values, with increase in compactive efforts, moulding water content and POFA content up to about 10%. This was the most suitable soil–POFA mixture for the hydraulic application.  相似文献   

9.
Groundnut shell ash, cement and their combinations are used as soil stabilizers in various percentages to improve the strength of locally available highly compressible clay soil. The effect of stabilizer in improving the strength of the soil is evaluated through change in consistency limits, compaction characteristics, undrained cohesion and modulus of elasticity. The durability characteristics of stabilised soil were studied based on the improvement of undrained shear strength for various days of curing by increasing the percentage of cement. Stabilised soil showed satisfactory improvement in strength and consistent durability characters. Groundnut shell ash and cement increased the optimum moisture content. There was a slight decrease in the dry density and modulus of elasticity of soil. These can be used as a viable economic alternative in construction of roads and for stabilising soil acting as bearing medium. The use of groundnut shell ash, an agricultural waste, helps in waste management and promotes sustainable development of local construction industry.  相似文献   

10.
In current geoenvironmental practice, design engineers usually require that soil liners in waste landfills be compacted within a specified range of water content and dry unit weight. This specification is based primarily on the need to achieve a minimum dry unit weight for factors controlling the performance of compacted soil liners most especially the hydraulic conductivity, k. In this study, lateritic soil treated with up to 10% bentonite, prepared at various compaction states (dry of optimum, optimum and wet of optimum moisture content) was compacted with four compactive efforts (i.e., the reduced British Standard Light, British Standard Light, West African Standard, and British Standard Heavy) to simulate the range of compaction energies expected in the field. Prepared soil mixtures were permeated with water and specimens that yielded the permissible limit of k????1?×?10?9?m/s were enclosed in an envelope (known as the acceptable zone) on the water content?Cdry unit weight curve. It was observed that compaction conditions resulting in moisture content slightly wet of optimum led to the lowest values of k and that the shapes and boundaries of the acceptable zones gradually increased in extent, shifting to wet side of optimum moisture content as the bentonite content increased to 10%. This approach provides good control over the quality of compacted soils and has great potential for field application.  相似文献   

11.
Black locust (Robinia pseudoacacia) has been widely planted in the Chinese Loess Plateau for soil and water conservation as an important forest species. This study examined variations in topsoil organic C (OC), total N and P (TN and TP), available N, P and K (AN, AP and AK), and soil microbial biomass C, N and P (SMBC, SMBN and SMBP) contents and the activity of urease (URE), α-amylase (ALA), alkaline phosphatase (ALP), catalase (CAT), saccharase (SAC), polyphenol oxidase (PPO) and cellulase (CEL) in loessial soil of black locust with an age sequence of 5, 10 15, 20, 25, 30, 40 and 50 years in Zhifanggou watershed (8.27 km2), Shaanxi Province, Northwest China. Also cultivated fields and 80-year Chinese arborvitae (Platycladus orientalis) were selected for the comparison. The results showed that soil chemical properties, microbial biomasses and soil enzyme activities varied with the restoration age. After 50-year growth of black locust, OC, TN, AN, TP, AK, SMBC, SMBN, SMBP, URE, ALP, SAC and CEL in soil increased by 262, 193, 345, 22, 36, 210, 136, 85, 90, 108, 288 and 36%, respectively, while PPO decreased by 31%. Soil chemical properties of TN and soil microbial biomass of SMBC were linearly correlated with soil enzymes of URE, ALP and SAC. Moreover, nitrogen fixation of black locusts was not evident before it became mature, but more evident after it reached maturity. The results confirmed that black locusts have long-term benefits on the improvement of soil properties as exotic species on the Loess Plateau for the soil properties under black locusts were greatly improved compared to cultivated fields.  相似文献   

12.
Several soil improvement methods are used to enhance the engineering properties of soil, among which, reinforcement by fibers is considered as an effective ground improvement method because of its cost effectiveness, and easy adaptability. The present investigation chooses synthetic wick and vinifera raphia fibers as reinforcement. The synthetic wick fiber was randomly included into the soil at four different percentages i.e. 0, 2, 4, 6% by volume of raw soil. Vinifera raphia fiber was used at one percentage (4%) as control. The main objective of this research is to focus on the strength behavior of clayey soil reinforced with randomly included synthetic wick fiber. The physical and mineralogical characterization was carried out on ten soil samples. The compression, flexion, abrasion, water absorption and capillarity tests were performed on synthetic wick reinforced specimens with various fiber contents. The results of these tests have clearly shown an improvement in the compression strength values from 1.65 to 2.84 MPa for the wicks fibers, and the flexural strength values which varied between 1.08 and 1.96 MPa. Hence, the waste of synthetic wick fibers is therefore an efficient reinforcement for compressed earth blocks, which are very significant for construction of durable and economic infrastructures.  相似文献   

13.
高含水率淤泥生石灰材料化土击实方法初探   总被引:3,自引:0,他引:3  
桂跃  杜国庆  张勤羽  宋文智  蔡超 《岩土力学》2010,31(Z1):127-137
为了击实高含水率淤泥生石灰材料化土,通过改进标准击实仪,设计了4种不同击实冲量的击实情形,对不同掺灰比的材料化土在不同闷料期进行击实试验,分析了击实冲量及击实功与淤泥生石灰材料化土干密度的关系,提出了材料化土的击实方法及击实评价方法。建议根据材料化土的含水比 选择击实冲量适宜的击实方法,通过土的干密度随击次变化规律判断材料化土是否击实。特别从工程角度出发,测试了击实材料化土不同龄期的无侧限抗压强度,初步探讨了高含水率疏浚淤泥生石灰材料化土作为工程填料的可行性。  相似文献   

14.
A series of laboratory tests was conducted on a tropical residual soil, which is widespread and readily available over a considerable part of Peninsular Malaysia, to assess whether it could be compacted as hydraulic barriers in waste disposal landfills. Index properties, swelling potential, cation exchange capacity (CEC), compaction characteristics, and hydraulic conductivity of the soil indicate that it is inorganic, very plastic, inactive (activity <0.75), moderately expansive (modified free swell index is about 3.06), and of fair attenuation capacity (for inorganic contaminants). For hydraulic conductivity measurement, the soil was compacted in rigid-wall permeameter moulds at a variety of water contents and compactive efforts and then permeated with de-aired tap water. The results of hydraulic conductivity tests illustrate that hydraulic conductivity lower than 1×10–7 cm/s can be achieved using a broad range of water contents and compactive efforts, including water contents dry of optimum. Its shrinkage and strength properties show that it has minimal potential to shrinkage and has adequate strength to support the overburden pressure imposes by the waste body. These findings suggest that the residual soil can be potentially utilized as compacted soil liner material.  相似文献   

15.
Industrial waste generation has reached up to millions of tons yearly. One way to solve the problems of the large accumulating amount of waste could be to incorporate it into the soil; thus, finding a way for the use of industrial waste could be a quest for soil improvement studies. Industrial sludge in certain pozzolanic form reacts with soil and possesses cementitious properties. This paper illustrates the utilization of lime, steel and copper sludge in improvement of high plasticity clayey soil. The influence of stabilizer type, different curing times and various ratios of lime to sludge are evaluated by Atterberg limits, standard proctor compaction, unconfined compressive strength and unconsolidated undrained strength in triaxial test. The  test results show that adding lime and sludge results in an increase in maximum strength. Moreover, the strength of soil increases with the increase of curing time. Utilizing stabilizers also influences plasticity index and compaction parameters. Finally, the results demonstrate that steel sludge has better performance than that of copper sludge in term of strength development.  相似文献   

16.
Laboratory investigations were carried out on reddish brown tropical soils from Moniya, Ibadan Southwestern Nigeria to determine the basic unconfined compressive strength of the soil samples which is an important factor to be considered when considering materials as liners in waste containment structure. Clay mineralogy, major element geochemical analyses were carried out by means of X-ray diffractometry and X-ray fluorescence spectrometry respectively. The engineering tests such as sieve size analyses, Atterberg limits, natural moisture contents, specific gravity and compaction using four different compactive efforts namely reduced proctor, standard proctor, West African standard and modified proctor. The tests were carried out in line with the procedures of the British standard 1377 of 1990 and Head of 1992. The soils were found to contain kaolinite as the major minerals with some mixtures of smectite, muscovite, halloysite, quartzite, biotite and aluminium phosphate. Values of the unconfined compressive strength obtained within 12.5 and 22.5% moulding water contents equal to or greater than 200 kN/m2 which is the minimum acceptable value required for containment facilities. The maximum dry density, Mg/m3 ranged between 1.68 and 1.98 while Optimum moisture content, % ranged between 12.3 and 21.2. Hence, unconfined compressive strength values were found to be greater than 200 kN/m2 at dry unit weight of 16.20 kN/m3 especially when WAS and modified proctor compactive efforts were used which met the minimum required unconfined compressive strength of 200 kN/m2 for hydraulic barriers in waste containment facilities.  相似文献   

17.
At present, nearly 100 million tonnes of fly ash is being generated annually in India posing serious health and environmental problems. To control these problems, the most commonly used method is addition of fly ash as a stabilizing agent usually used in combination with soils. In the present study, high-calcium (ASTM Class C—Neyveli fly) and low-calcium (ASTM Class F—Badarpur fly ash) fly ashes in different proportions by weight (10, 20, 40, 60 and 80 %) were added to a highly expansive soil [known as black cotton (BC) soil] from India. Laboratory tests involved determination of physical properties, compaction characteristics and swell potential. The test results show that the consistency limits, compaction characteristics and swelling potential of expansive soil–fly ash mixtures are significantly modified and improved. It is seen that 40 % fly ash content is the optimum quantity to improve the plasticity characteristics of BC soil. The fly ashes exhibit low dry unit weight compared to BC soil. With the addition of fly ash to BC soil the maximum dry unit weight (γdmax) of the soil–fly ash mixtures decreases with increase in optimum moisture content (OMC), which can be mainly attributed to the improvement in gradation of the fly ash. It is also observed that 10 % of Neyveli fly ash is the optimum amount required to minimize the swell potential compared to 40 % of Badarpur fly ash. Therefore, the main objective of the study was to study the effect of fly ashes on the physical, compaction, and swelling potential of BC soils, and bulk utilization of industrial waste by-product without adversely affecting the environment.  相似文献   

18.
Material engineers are continually confronted by depletion of quality construction materials for road and airfield construction. Even if good quality construction materials for road and airfield are available, the haul costs may preclude their use. Stabilization of soils in order to improve strength and durability properties often relies on cement, lime, fly ash, and asphalt emulsion. These materials are inexpensive, relatively easy to apply, and provide benefits to many different soil types. In addition, there are a variety of nontraditional soil stabilization/modification additives available from the commercial sector such as polymer emulsions, acids, lignin derivatives, enzymes, tree resin emulsions, and silicates. These additives may be in liquid or solid state and are often touted to be applicable for most soils. Polymers may be easy to apply in permeable materials such as sand and may achieve good stabilization in relatively shorter periods of time. These polymer materials can be used for stabilizing, soil in road shoulders, slopes, and pads of military and emergency airports. In addition, these types of materials can be used to prevent the movement of the dune sands on the sides of railroads and stabilizing the dust on the surface of access roads. Within the present research, two different polymers of wide range of dosages have been applied. Following results have been achieved: (1) These polymers improve the compressive strength from 0.03 N/mm2 for control sample to 5.2 N/mm2 for improved sample. (2) The optimum curing time of dune sands with different polymers is 7 days. (3) The UC strength of stabilized samples soars with an increase in the temperature, in the first 24 h of the curing process. (4) When the concentration of salt increased from 1 to 10 percent, UC strength of stabilized samples decreased.  相似文献   

19.
A reddish brown lateritic soil treated with up to 15% blast furnace slag was compacted with three compactive efforts, (standard Proctor, West African Standard and modified Proctor) with moulding water contents ranging between 10 and 20% of weight of dry mixture. Compacted samples were extruded and allowed to dry in the laboratory for 30 days with measurements taken every 5 days to monitor volumetric changes due to drying. Four specimens compacted on the wet side of optimum using standard proctor effort; at the various slag treatments after 10 days of drying were subjected to four cycles of drying and three cycles of wetting. The results obtained showed that the changes in mass and volumetric shrinkage were rapid within the first 5 days of drying. These changes were proportional to the moulding water contents and were unaffected by the compactive effort. The volumetric shrinkage strain increased with increasing moulding water content and compactive efforts. As the water content relative to the optimum increased towards the wet side, the volumetric shrinkage strain increased and it decreased towards the dry side. For all compaction energies, the initial degree of saturation increased and regardless of the slag content, the volumetric shrinkage strain increased. As the slag content increased, the initial degree of saturation at which the permissible 4% volumetric shrinkage occurred increased. Slag content had marginal effects on the volumetric shrinkage strain as no clear trend was established. For each slag treatment the volumetric shrinkage strain did not vary significantly with increasing number of drying cycles.  相似文献   

20.
Lateritic soils which have been described as highly weathered tropical or subtropical residual soils were studied with an attempt to establish its suitability or otherwise as sustainable material in building bricks and housing development that will meet the present challenge of sustaining the environment without costing too much and maintaining a high standard of strength, durability and aesthetics. Index properties of the tested lateritic soils revealed them as mostly well graded, comprising both cohesive (silt and clay) and cohesionless (sand and gravel) soil fraction. The geotechnical analyses on the studied lateritic soil revealed a strong compressive strength with a relatively sound dry density which could guarantee a good durability in resulting bricks made from these soil materials. Further test on the strength and durability of the compressed earth bricks (CEBs) made from these lateritic soils revealed a brick with compressive strength ranging between 6.33 and 15.57 MPa which is considered to be of good strength coupled with its sound durability strength established over a period of more than one year under a complete cycle of weather and seasonal conditions. In conclusion, lateritic soils from the study area were found to be suitable as materials for bricks (CEB) with good compressive and durability strength which qualifies them as sustainable and cost-effective materials for low-cost housing development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号