首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Water Storage Changes over the Tibetan Plateau Revealed by GRACE Mission   总被引:1,自引:0,他引:1  
We use GRACE gravity data released by the Center for Space Research (CSR) and the Groupe de Recherches en Geodesie Spatiale (GRGS) to detect the water storage changes over the Tibetan Plateau (TP). A combined filter strategy is put forward to process CSR RL05 data to remove the effect of striping errors. After the correction for GRACE by GLDAS and ICE-5G, we find that TP has been overall experiencing the water storage increase during 2003–2012. During the same time, the glacier over the Himalayas was sharply retreating. Interms of linear trends, CSR’s results derived by the combined filter are close to GRGS RL03 with the Gaussian filter of 300-km window. The water storage increasing rates determined from CSR’s RL05 products in the interior TP, Karakoram Mountain, Qaidam Basin, Hengduan Mountain, and middle Himalayas are 9.7, 6.2, 9.1,–18.6, and–20.2 mm/yr, respectively. These rates from GRGS’s RL03 products are 8.6, 5.8, 10.5,–19.3 and–21.4 mm/yr, respectively.  相似文献   

3.
Groundwater plays a major role in the hydrological processes driven by climate change and human activities, particularly in upper mountainous basins. The Jinsha River Basin (JRB) is the uppermost region of the Yangtze River and the largest hydropower production region in China. With the construction of artificial cascade reservoirs increasing in this region, the annual and seasonal flows are changing and affecting the water cycles. Here, we first infer the groundwater storage changes (GWSC), accounting for sediment transport in JRB, by combining the Gravity Recovery and Climate Experiment mission, hydrologic models and in situ data. The results indicate: (1) the average estimation of the GWSC trend, accounting for sediment transport in JRB, is 0.76 ± 0.10 cm/year during the period 2003 to 2015, and the contribution of sediment transport accounts for 15%; (2) precipitation (P), evapotranspiration (ET), soil moisture change, GWSC, and land water storage changes (LWSC) show clear seasonal cycles; the interannual trends of LWSC and GWSC increase, but P, runoff (R), surface water storage change and SMC decrease, and ET remains basically unchanged; (3) the main contributor to the increase in LWSC in JRB is GWSC, and the increased GWSC may be dominated by human activities, such as cascade damming and climate variations (such as snow and glacier melt due to increased temperatures). This study can provide valuable information regarding JRB in China for understanding GWSC patterns and exploring their implications for regional water management.  相似文献   

4.
5.
地下水储量的有效监测是实现区域水资源管理的重要依据,传统监测方法存在各自的局限性导致其实现较为困难.本文提供一种使用GRACE卫星重力数据与GLDAS水文模型数据反演得到安徽省区域地下水储量变化的方法.利用2002年4月-2017年6月不同机构GRACE卫星重力数据的综合解,经过DDK去相关光滑滤波与退卷积法分别消除或削弱南北条带误差、改正信号泄露反演得到安徽省陆地水储量变化,扣除由GLDAS水文模型数据获取的地表水储量变化,得到安徽省地下水储量变化时间序列,并结合国家统计局官方发布的安徽省地下水资源量进行初步验证分析.研究结果表明:安徽省地下水储量变化长期表现为波动下降趋势,其年变化率约为-5.35 mm·a-1,且呈现出自东南方向至西北方向逐次递减的显著空间差异;地下水储量表现出明显的季节性变化,夏季和冬季地下水储量呈现回升趋势,春季和秋季呈现出下降趋势.除去反演过程存在较大干扰因素的情况,反演结果与国家统计局官方数据的相关系数达到89.62%,因此本文反演得到的地下水储量变化的结果是相对可靠的.  相似文献   

6.
Reducing aliasing effects of insufficiently modelled high-frequent, non-tidal mass variations of the atmosphere, the oceans and the hydrosphere in gravity field models derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission is the topic of this study. The signal content of the daily GRACE gravity field model series (ITG-Kalman) is compared to high-frequency bottom pressure variability and terrestrially stored water variations obtained from recent numerical simulations from an ocean circulation model (OMCT) and two hydrological models (WaterGAP Global Hydrology Model, Land Surface Discharge Model). Our results show that daily estimates of ocean bottom pressure from the most recent OMCT simulations and the daily ITG-Kalman solutions are able to explain up to 40 % of extra-tropical sea-level variability in the Southern Ocean. In contrast to this, the daily ITG-Kalman series and simulated continental total water storage variability largely disagree at periods below 30 days. Therefore, as long as no adequate hydrological model will become available, the daily ITG-Kalman series can be regarded as a good initial proxy for high-frequency mass variations at a global scale. As a second result of this study, based on monthly solutions as well as daily observation residuals, it is shown that applying this GRACE-derived de-aliasing model supports the determination of the time-variable gravity field from GRACE data and the subsequent geophysical interpretation. This leads us to the recommendation that future satellite concepts for determining mass variations in the Earth system should be capable of observing higher frequeny signals with sufficient spatial resolution.  相似文献   

7.

华北平原作为我国重要的工农业基地和政治经济中心,面临着严重的水资源危机.因此,开展对华北平原地下水储量变化的监测工作具有重要现实意义与科学价值.本文基于GRACE重力卫星的空间约束方法,研究了华北平原地下水储量变化的时空分布规律,并与地面水井实测与地下水模型结果进行了综合比较和分析.结果表明:2002—2014年,华北平原地下水存在明显的长期亏损,GRACE估计的亏损速率为-7.4±0.9 km3·a-1,而地面水井资料估计的浅层地下水亏损速率为-1.2 km3·a-1.对比两者之间的差异可以发现,华北平原的地下水亏损以深层地下水为主.2002—2008年,GRACE估计的华北平原地下水亏损速率为-5.3±2.2 km3·a-1,这与华北平原两个地下水模型得到的平均亏损速率-5.4 km3·a-1十分吻合.通过华北平原区域地下水模型的独立验证,说明GRACE可以有效评估华北平原的地下水储量变化趋势.除了长期亏损的趋势项之外,华北平原地下水还存在明显的年际变化特征,并与该地区年降雨量变化特征一致.在降雨偏少的2002年、2005—2009年和2014年,华北平原地下水储量显著减少.在空间分布上,GRACE结果表明,华北平原的地下水储量减少主要发生在山前平原和中部平原区,这也与水井实测资料和区域地下水模型结果较为吻合.与GRACE和区域地下水模型相比,目前的全球水文模型仍无法准确估计华北平原地下水变化的空间分布和亏损速率.上述研究表明,GRACE提供了评估华北平原地下水储量变化的重要监测手段.

  相似文献   

8.
Groundwater is a resilient water source and its importance is even greater in periods of drought. Areas such as the Mediterranean where adverse climate change effects are expected are bell‐weather locations for groundwater depletion and are of considerable interest. The present study evaluates renewable groundwater stress (RGS) as the ratio of groundwater use to groundwater availability, quantifying use as the trend in gravity recovery and climate experiment‐derived (GRACE) subsurface anomalies (ΔGWtrend) and renewable groundwater availability as mean annual recharge. Estimates for mean annual recharge for the various regions in Greece have been derived using numerical models. Our results highlight two RGS regimes in Greece (variable stress and unstressed) of the four characteristic stress regimes, that is, overstressed, variable stress, human‐dominated stress, and unstressed, defined as a function of the sign of use and the sign of groundwater availability (positive or negative). Variable stress areas are found in Central Greece (Thessaly region), where intensive agriculture results in negative ΔGWtrend values combined with positive mean annual recharge rates. RGS values range from ?0.05 to 0, indicating a low impact area. Within this region, adverse effects of groundwater overexploitation are already evident based on the negative GRACE anomalies; however, recharge is still positive, mitigating the effects of over‐pumping. The rest of Greek aquifers fall within the unstressed category, with RGS values from 0.02 to 0.05, indicating that the rate of use is less than the natural recharge rate.  相似文献   

9.
In the last decade, remote sensing of the temporal variation of ground level and gravity has improved our understanding of groundwater dynamics and storage. Mass changes are measured by GRACE (Gravity Recovery and Climate Experiment) satellites, whereas ground deformation is measured by processing synthetic aperture radar satellites data using the InSAR (Interferometry of Synthetic Aperture Radar) techniques. Both methods are complementary and offer different sensitivities to aquifer system processes. GRACE is sensitive to mass changes over large spatial scales (more than 100,000 km2). As such, it fails in providing groundwater storage change estimates at local or regional scales relevant to most aquifer systems, and at which most groundwater management schemes are applied. However, InSAR measures ground displacement due to aquifer response to fluid‐pressure changes. InSAR applications to groundwater depletion assessments are limited to aquifer systems susceptible to measurable deformation. Furthermore, the inversion of InSAR‐derived displacement maps into volume of depleted groundwater storage (both reversible and largely irreversible) is confounded by vertical and horizontal variability of sediment compressibility. During the last decade, both techniques have shown increasing interest in the scientific community to complement available in situ observations where they are insufficient. In this review, we present the theoretical and conceptual bases of each method, and present idealized scenarios to highlight the potential benefits and challenges of combining these techniques to remotely assess groundwater storage changes and other aspects of the dynamics of aquifer systems.  相似文献   

10.
Better quantification of continental water storage variations is expected to improve our understanding of water flows, including evapotranspiration, runoff and river discharge as well as human water abstractions. For the first time, total water storage (TWS) on the land area of the globe as computed by the global water model WaterGAP (Water Global Assessment and Prognosis) was compared to both gravity recovery and climate experiment (GRACE) and global positioning system (GPS) observations. The GRACE satellites sense the effect of TWS on the dynamic gravity field of the Earth. GPS reference points are displaced due to crustal deformation caused by time-varying TWS. Unfortunately, the worldwide coverage of the GPS tracking network is irregular, while GRACE provides global coverage albeit with low spatial resolution. Detrended TWS time series were analyzed by determining scaling factors for mean annual amplitude (f GRACE) and time series of monthly TWS (f GPS). Both GRACE and GPS indicate that WaterGAP underestimates seasonal variations of TWS on most of the land area of the globe. In addition, seasonal maximum TWS occurs 1 month earlier according to WaterGAP than according to GRACE on most land areas. While WaterGAP TWS is sensitive to the applied climate input data, none of the two data sets result in a clearly better fit to the observations. Due to the low number of GPS sites, GPS observations are less useful for validating global hydrological models than GRACE observations, but they serve to support the validity of GRACE TWS as observational target for hydrological modeling. For unknown reasons, WaterGAP appears to fit better to GPS than to GRACE. Both GPS and GRACE data, however, are rather uncertain due to a number of reasons, in particular in dry regions. It is not possible to benefit from either GPS or GRACE observations to monitor and quantify human water abstractions if only detrended (seasonal) TWS variations are considered. Regarding GRACE, this is mainly caused by the attenuation of the TWS differences between water abstraction variants due to the filtering required for GRACE TWS. Regarding GPS, station density is too low. Only if water abstractions lead to long-term changes in TWS by depletion or restoration of water storage in groundwater or large surface water bodies, GRACE may be used to support the quantification of human water abstractions.  相似文献   

11.
Throughout the past decade, the Gravity Recovery and Climate Experiment (GRACE) has given an unprecedented view on global variations in terrestrial water storage. While an increasing number of case studies have provided a rich overview on regional analyses, a global assessment on the dominant features of GRACE variability is still lacking. To address this, we survey key features of temporal variability in the GRACE record by decomposing gridded time series of monthly equivalent water height into linear trends, inter-annual, seasonal, and subseasonal (intra-annual) components. We provide an overview of the relative importance and spatial distribution of these components globally. A correlation analysis with precipitation and temperature reveals that both the inter-annual and subseasonal anomalies are tightly related to fluctuations in the atmospheric forcing. As a novelty, we show that for large regions of the world high-frequency anomalies in the monthly GRACE signal, which have been partly interpreted as noise, can be statistically reconstructed from daily precipitation once an adequate averaging filter is applied. This filter integrates the temporally decaying contribution of precipitation to the storage changes in any given month, including earlier precipitation. Finally, we also survey extreme dry anomalies in the GRACE record and relate them to documented drought events. This global assessment sets regional studies in a broader context and reveals phenomena that had not been documented so far.  相似文献   

12.
Previous studies indicate that water storage over a large part of the Middle East has been decreased over the last decade. Variability in the total (hydrological) water flux (TWF, i.e., precipitation minus evapotranspiration minus runoff) and water storage changes of the Tigris–Euphrates river basin and Iran’s six major basins (Khazar, Persian, Urmia, Markazi, Hamun, and Sarakhs) over 2003–2013 is assessed in this study. Our investigation is performed based on the TWF that are estimated as temporal derivatives of terrestrial water storage (TWS) changes from the Gravity Recovery and Climate Experiment (GRACE) products and those from the reanalysis products of ERA-Interim and MERRA-Land. An inversion approach is applied to consistently estimate the spatio-temporal changes of soil moisture and groundwater storage compartments of the seven basins during the study period from GRACE TWS, altimetry, and land surface model products. The influence of TWF trends on separated water storage compartments is then explored. Our results, estimated as basin averages, indicate negative trends in the maximums of TWF peaks that reach up to ?5.2 and ?2.6 (mm/month/year) over 2003–2013, respectively, for the Urmia and Tigris–Euphrates basins, which are most likely due to the reported meteorological drought. Maximum amplitudes of the soil moisture compartment exhibit negative trends of ?11.1, ?6.6, ?6.1, ?4.8, ?4.7, ?3.8, and ?1.2 (mm/year) for Urmia, Tigris–Euphrates, Khazar, Persian, Markazi, Sarakhs, and Hamun basins, respectively. Strong groundwater storage decrease is found, respectively, within the Khazar ?8.6 (mm/year) and Sarakhs ?7.0 (mm/year) basins. The magnitude of water storage decline in the Urmia and Tigris–Euphrates basins is found to be bigger than the decrease in the monthly accumulated TWF indicating a contribution of human water use, as well as surface and groundwater flow to the storage decline over the study area.  相似文献   

13.
In this study, a scheme is presented to estimate groundwater storage variations in Iran. The variations are estimated using 11 years of Gravity Recovery and Climate Experiments (GRACE) observations from period of 2003 to April 2014 in combination with the outputs of Global Land Data Assimilation Systems (GLDAS) model including soil moisture, snow water equivalent, and total canopy water storage. To do so, the sums of GLDAS outputs are subtracted from terrestrial water storage variations determined by GRACE observations. Because of stripping errors in the GRACE data, two methodologies based on wavelet analysis and Gaussian filtering are applied to refine the GRACE data. It is shown that the wavelet approach could better localize the desired signal and increase the signal‐to‐noise ratio and thus results in more accurate estimation of groundwater storage variations. To validate the results of our procedure in estimation of ground water storage variations, they are compared with the measurements of pisometric wells data near the Urmia Lake which shows favorable agreements with our results.  相似文献   

14.
Gravity Recovery and Climate Experiment (GRACE) satellite mission is ground-breaking information hotspot for the evaluation of groundwater storage. The present study aims at validating the sensitivity of GRACE data to groundwater storage variation within a basaltic aquifer system after its statistical downscaling on a regional scale. The basaltic aquifer system which covers 82.06% area of Maharashtra state in India, is selected as the study area. Five types of basaltic aquifer systems with varying groundwater storage capacities, based on hydrologic characteristics, have been identified within the study area. The spatial and seasonal trend analysis of observed in situ groundwater storage anomalies (ΔGWSano) computed from groundwater level data of 983 wells from the year 2002 to 2016, has been performed to analyze the variation in groundwater storages in the different basaltic aquifer system. The groundwater storage anomalies (ΔGWSDano) have been derived from GRACE Release 05 (RL05) after removing the soil moisture anomaly (ΔSMano) and canopy water storage anomaly (ΔCNOano) obtained from Global Land Data Assimilation System (GLDAS) land surface models (NOAH, MOSAIC, CLM and VIC). The artificial neural network technique has been used to downscale the GRACE and GLDAS data at a finer spatial resolution of 0.125°. The study shows that downscaled GRACE and GLDAS data at a finer spatial resolution is sensitive to seasonal groundwater storage variability in different basaltic aquifer systems and the regression coefficient R has been found satisfactory in the range of 0.696 to 0.818.  相似文献   

15.
Active faults are commonly associated with spatially anomalously high concentrations of soil gases such as carbon dioxide and Rn, suggesting that they are crustal discontinuities with a relatively high vertical permeability through which crustal and subcrustal gases may preferably escape towards the earth's surface. Many earthquake-related hydrologic and geochemical temporal changes have been recorded, mostly along active faults especially at fault intersections, since the 1960s. The reality of such changes is gradually ascertained and their features well delineated and fairly understood. Some coseismic changes recorded in ``near field' are rather consistent with poroelastic dislocation models of earthquake sources, whereas others are attributable to near-surface permeability enhancement. In addition, coseismic (and postseismic) changes were recorded for many moderate to large earthquakes at certain relatively few ``sensitive sites' at epicentral distances too large (larger for larger earthquakes, up to 1000 km or more for magnitude 8) to be explained by the poroelastic models. They are probably triggered by seismic shaking. The sensitivity of different sites can be greatly different, even when separated only by meters. The sensitive sites are usually located on or near active faults, especially their intersections and bends, and characterized by some near-critical hydrologic or geochemical condition (e.g., permeability that can be greatly increased by a relatively small seismic shaking or stress increase). Coseismic changes recorded for different earthquakes at a sensitive site are usually similar, regardless of the earthquakes' location and focal mechanism. The sensitivity of a sensitive site may change with time. Also pre-earthquake changes were observed hours to years before some destructive earthquakes at certain sensitive sites, some at large epicentral distances, although these changes are relatively few and less certain. Both long-distance coseismic and preseismic changes call for more realistic models than simple elastic dislocation for explanation. Such models should take into consideration the heterogeneity of the crust where stress is concentrated at certain weak points (sensitive sites) along active faults such that the stress condition is near a critical level prior to the occurrence of the corresponding earthquakes. To explain the preseismic changes, the models should also assume a broad-scaled episodically increasing strain field.  相似文献   

16.
Temporal gravity changes provide information about mass and/or density variations within and below the volcano edifice. Three active volcanoes have been under investigation; each of them related to a plate boundary: Mayon/Luzon/Philippines, Merapi/Java/Indonesia, and Galeras/Colombia. The observed gravity changes are smaller than previously expected but significant. For the three volcanoes under investigation, and within the observation period, mainly the increase of gravity is observed, ranging from 1,000 nm–2 to 1,600 nms–2. Unexpectedly, the gravity increase is confined to a rather small area with radii of 5 to 8 km around the summit. At Mayon and Merapi the parallel GPS measurements yield no significant elevation changes. This is crucial for the interpretation, as the internal pressure variations do not lead to significant deformation at the surface. Thus the classical Mogi-model for a shallow extending magma reservoir cannot apply. To confine the possible models, the attraction due to changes of groundwater level or soil moisture is estimated along the slope of Merapi exemplarily by 2-D modelling. Mass redistribution or density changes were evaluated within the vent as well as deeper fluid processes to explain the gravity variations; the results are compared to the model incorporating the additional effect of elastic deformation.  相似文献   

17.
The effects of surface water flow system changes caused by constructing water‐conservation areas and canals in southeast Florida on groundwater quality under the Atlantic Coastal Ridge was investigated with numerical modeling. Water quality data were used to delineate a zone of groundwater with low total dissolved solids (TDS) within the Biscayne aquifer under the ridge. The delineated zone has the following characteristics. Its location generally coincides with an area where the Biscayne aquifer has high transmissivities, corresponds to a high recharge area of the ridge, and underlies a part of the groundwater mound formed under the ridge prior to completion of the canals. This low TDS groundwater appears to be the result of pre‐development conditions rather than seepage from the canals constructed after the 1950s. Numerical simulation results indicate that the time for low TDS groundwater under the ridge to reach equilibrium with high TDS surface water in the water‐conservation areas and Everglades National Park are approximately 70 and 60 years, respectively. The high TDS groundwater would be restricted to the water‐conservation areas and the park due to its slow eastward movement caused by small hydraulic gradients in Rocky Glades and its mixing with the low TDS groundwater under the high‐recharge area of the ridge. The flow or physical boundary conditions such as high recharge rates or low hydraulic conductivity layers may affect how the spatial distribution of groundwater quality in an aquifer will change when a groundwater flow system reaches equilibrium with an associated surface water flow system.  相似文献   

18.
The Earth’s surface fluid mass redistribution, e.g., groundwater depletion and severe drought, causes the elastic surface deformation, which can be measured by global positioning system (GPS). In this paper, the continuous GPS observations are used to estimate the terrestrial water storage (TWS) changes in southwestern USA, which have a good agreement with TWS changes derived from Gravity Recovery And Climate Experiment (GRACE) and hydrological models. The seasonal variation is mostly located in the Rocky mountain range and Mississippi river watershed. The largest amplitude of the seasonal variation is between 12 and 15 cm in equivalent water thickness. The timing and duration of TWS anomalies caused by the severe drought in 2012 are observed by the GPS-derived TWS, which are confirmed by the GRACE results. Different hydrological models are further used for comparison with GPS and GRACE results. The magnitude of TWS depletion from GRACE and GPS observations during the drought is larger than that from hydrological models, which indicates that the drought was caused by comparable groundwater and surface water depletion. The interannual TWS changes from GPS are also consistent with the precipitation pattern over the past 6 years, which further confirms the severe drought in 2012. This study demonstrates that continuous GPS observations have the potential as real-time drought indicator.  相似文献   

19.
王武星  梁明 《地震》2018,38(2):84-94
利用GRACE重力卫星观测资料, 系统地分析了喜马拉雅俯冲带及周边几次7级以上大地震前后的区域重力场变化特征。 研究发现, 2005年巴基斯坦MS7.8、 2008年汶川MS8.0、 2011年缅甸MS7.2、 2013年芦山MS7.0和2015年尼泊尔MS8.1等大地震都发生在重力显著变化区域及周边, 地震前几年开始区域重力在原变化趋势下呈现快速减小特征, 而后, 减小后的重力恢复增加, 大地震均发生在这种重力变化过程中。 大地震前的这种重力变化过程与苏门答腊MW9.3和东日本MW9.0地震的同震和震后区域重力变化过程类似, 只是幅度要远远小于这两个地震的同震和震后变化, 而且重力减小恢复较快。 综合分析认为喜马拉雅俯冲带及周边区域几次7级以上大地震前后的区域重力变化, 都与巨大地震过程中, 板块活动调整的弹性变形、 区域地下深部地幔物质运移和热引起的区域气候改变有关。 据此, 为区域重力变化的共同特征提出一种物理过程模式解释。 苏门答腊MW9.3及其巨大余震过程中, 喜马拉雅俯冲带局部区域出现地壳的拉伸、 下沉, 一段时间后, 转变为挤压、 抬升。  相似文献   

20.
Satellite altimetry and GRACE observations carry both the signature of ocean tides and have in general complementary potential to resolve tidal constituents. It is therefore straightforward to perform a combined estimation of a global ocean tide model based on these two data sources. The present paper develops and applies a three step procedure for generating such a combined ocean tide model. First, the processing of multi-mission altimetry data is described along with the harmonic analysis applied to derive initially a pure empirical ocean tide model. Then the capability of GRACE to sense particular tidal constituents is elaborated and an approach to estimate tidal constituents from GRACE is outlined. In a third step a combination strategy with optimal stochastic data treatment is developed and applied to the altimetry-only tide model EOT08a and four years of GRACE observations, leading to the combined model EOT08ag. The differential contributions of GRACE to EOT08ag remain small and are mainly concentrated to the Arctic Ocean, an area with little or poor altimetry data. In comparison with other tide models, EOT08ag is validated by K-band range residuals, the impact on gravity field modelling and on precise orbit determination and by variance reduction of crossover differences. None of these comparison exhibits a significant improvement over the altimetry-only tide model except for a few areas above 60°N. Overall the improvements of the combination remain small and appear to stay below the current GRACE baseline accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号