共查询到20条相似文献,搜索用时 15 毫秒
1.
Au–Ag mineralization of the Olcha and Teploe epithermal deposits underwent thermal metamorphism due to porphyritic intrusions. The presence of Bi-bearing galena and matildite in the ores (Teploe), Cu–Te-bearing naumannite (Olcha), the occurrence of middle- and high-temperature facies of metasomatic rocks (epidote and actinolite), and temperature formation conditions are related, firstly, to the influence of granitoids on the ore process, which supplied not only Cu and Mo, but also Bi, Te, and, secondly, to the heating of host rocks containing pre-porphyritic epithermal Au–Ag mineralization. The abundance of Cu–Ag sulfides and Cu-acanthite resulted from the enrichment of later mineral phases in Cu and Ag under the substance redistribution with the formation of Ag-acanthite ores. The data considered in the paper are of practical importance for regional forecasting of metallogenic constructions, exploration, and evaluation of the epithermal Au–Ag deposits. 相似文献
2.
Zhiguo Cheng Fengmei Chai Tong Hou M. Santosh A. Turesebekov 《International Geology Review》2018,60(1):1-20
The Almalyk porphyry cluster in the western part of the Central Asian Orogenic Belt is the second largest porphyry region in Asia and hence has attracted considerable attention of the geologists. In this contribution, we report the zircon U–Pb ages, major and trace element geochemistry as well as Sr–Nd isotopic data for the ore-related porphyries of the Sarycheku and Kalmakyr deposits. The zircon U–Pb ages (Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)) of ore-bearing quartz monzonite and granodiorite porphyries from the Kalmakyr deposit are 326.1 ± 3.4 and 315.2 ± 2.8 Ma, and those for the ore-bearing granodiorite porphyries and monzonite dike from the Sarycheku deposit are 337.8 ± 3.1 and 313.2 ± 2.5 Ma, respectively. Together with the previous ages, they confine multi-phase intrusions from 337 to 306 Ma for the Almalyk ore cluster. Geochemically, all samples belong to shoshonitic series and are enriched in large-ion lithophile elements relative to high field strength elements with very low Nb/U weight ratios (0.83–2.56). They show initial (87Sr/86Sr)i ratios of 0.7059–0.7068 for Kalmakyr and 0.7067–0.7072 for Sarycheku and low εNd(t) values of ?1.0 to ?0.1 for Kalmakyr and ?2.3 to 0.2 for Sarycheku, suggesting that the magmas were dominantly derived from a metasomatized mantle wedge modified by slab-derived fluids with the contribution of the continental crust by assimilation-fractional-crystallization process. Compared to the typical porphyry Cu deposits, the ore-bearing porphyries in the Almalyk cluster are shoshonitic instead of the calc-alkaline. Moreover, although the magmatic events were genetically related to a continental arc environment, the ore-bearing porphyries at Sarycheku and Kalmakyr do not show geochemical signatures of typical adakites as reflected in some giant porphyry deposits in the Circum-Pacific Ocean, indicating that slab-melting may not have been involved in their petrogenesis. 相似文献
3.
4.
The Heijianshan Fe–Cu (–Au) deposit, located in the Aqishan-Yamansu belt of the Eastern Tianshan (NW China), is hosted in the mafic–intermediate volcanic and mafic–felsic volcaniclastic rocks of the Upper Carboniferous Matoutan Formation. Based on the pervasive alteration, mineral assemblages and crosscutting relationships of veins, six magmatic–hydrothermal stages have been established, including epidote alteration (Stage I), magnetite mineralization (Stage II), pyrite alteration (Stage III), Cu (–Au) mineralization (Stage IV), late veins (Stage V) and supergene alteration (Stage VI). The Stage I epidote–calcite–tourmaline–sericite alteration assemblage indicates a pre-mineralization Ca–Mg alteration event. Stage II Fe and Stage IV Cu (–Au) mineralization stages at Heijianshan can be clearly distinguished from alteration, mineral assemblages, and nature and sources of ore-forming fluids.Homogenization temperatures of primary fluid inclusions in quartz and calcite from Stage I (189–370 °C), II (301–536 °C), III (119–262 °C) and V (46–198 °C) suggest that fluid incursion and mixing probably occurred during Stage I to II and Stage V, respectively. The Stage II magmatic–hydrothermal-derived Fe mineralization fluids were characterized by high temperature (>300 °C), medium–high salinity (21.2–56.0 wt% NaCl equiv.) and being Na–Ca–Mg–Fe-dominated. These fluids were overprinted by the external low temperature (<300 °C), medium–high salinity (19.0–34.7 wt% NaCl equiv.) and Ca–Mg-dominated basinal brines that were responsible for the subsequent pyrite alteration and Cu (–Au) mineralization, as supported by quartz CL images and H–O isotopes. Furthermore, in-situ sulfur isotopes also indicate that the sulfur sources vary in different stages, viz., Stage II (magmatic–hydrothermal), III (basinal brine-related) and IV (magmatic–hydrothermal). Stage II disseminated pyrite has δ34Sfluid values of 1.7–4.3‰, comparable with sulfur from magmatic reservoirs. δ34Sfluid values (24.3–29.3‰) of Stage III Type A pyrite (coexists with hematite) probably indicate external basinal brine involvement, consistent with the analytical results of fluid inclusions. With the basinal brines further interacting with volcanic/volcaniclastic rocks of the Carboniferous Matoutan Formation, Stage III Type B pyrite–chalcopyrite–pyrrhotite assemblage (with low δ34Sfluid values of 4.6–10.0‰) may have formed at low fO2 and temperature (119–262 °C). The continuous basinal brine–volcanic/volcaniclastic rock interactions during the basin inversion (∼325–300 Ma) may have leached sulfur and copper from the rocks, yielding magmatic-like δ34Sfluid values (1.5–4.1‰). Such fluids may have altered pyrite and precipitated chalcopyrite with minor Au in Stage IV. Eventually, the Stage V low temperature (∼160 °C) and low salinity meteoric water may have percolated into the ore-forming fluid system and formed late-hydrothermal veins.The similar alteration and mineralization paragenetic sequences, ore-forming fluid sources and evolution, and tectonic settings of the Heijianshan deposit to the Mesozoic Central Andean IOCG deposits indicate that the former is probably the first identified Paleozoic IOCG-like deposit in the Central Asian Orogenic Belt. 相似文献
5.
《Russian Geology and Geophysics》2015,56(3):435-445
The spatial coexistence and synchronous formation of magmatogene porphyry Cu–Mo mineralization and epithermal gold mineralization are due to the genetic relationship between their formation processes. This relationship might be due to the generation of metal-bearing fluids of different geochemical compositions by the porphyry ore-magmatic system, which then participate in the formation of magmatogene porphyry Cu–Mo(Au) and associated epithermal gold deposits. Synthesis of fluid inclusions in quartz was performed for experimental study of the behavior of Cu, Mo, W, Sn, Au, As, Sb, Te, Ag, and Bi in heterophase fluids similar in composition and aggregate state to natural ore-forming fluids of porphyry Cu–Mo(Au) deposits. We have established that at 700 °C, a pressure decrease from 117 to 106 MPa leads to a significant enrichment of the gas phase of heterophase chloride fluid with Au, As, Sb, and Bi. The heterophase state of carbonate–chloride–sulfate fluids is observed at 600 °C and 100–90 MPa. It characterizes the highly concentrated liquid carbonate–sulfide phase–liquid chloride phase–low-density gas phase equilibrium. A decrease in the pressure of heterophase carbonate–chloride–sulfate fluid leads to a noticeable enrichment of its chloride phase with Cu, Mo, Fe, W, Ag, Sn, Sb, and Zn relative to the carbonate–sulfate phase. The processes of redistribution of ore elements between the phases of heterophase fluids can be considered a model of generation of metal-bearing chloride fluids, which occurs in nature during the formation of porphyry Cu–Mo(Au) deposits, as well as a model of generation of gas fluids supplying Au, Te, As, and other ore elements to the place of formation of epithermal Au–Cu and Au–Ag mineralization.© 2015, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved. 相似文献
6.
The Haenam volcanic field was formed in the southern part of the Korean peninsula by the climactic igneous activity of the Late Cretaceous. The volcanic field hosts more than nine hydrothermal clay deposits and two epithermal Au–Ag deposits. This study focuses on the relationship between hydrothermal clay alteration and epithermal Au–Ag mineralization based on the geology, alteration mineralogy, geochronology, and mineralization characteristics.These clay and epithermal Au–Ag deposits are interpreted to have formed by the same hydrothermal event which produced two distinct types of mineral systems: 1) Au-dominant epithermal Au–Ag deposit and 2) clay-dominant hydrothermal clay deposit. The two types of mineral systems show a close genetic relationship as suggested by their temporal and spatial relationships. The Seongsan hydrothermal system progressively evolved from a low-intermediate sulfidation epithermal system with Au–Ag mineralization and phyllic alteration to an acid–sulfate high-sulfidation system with Au–Ag mineralization and/or barren advanced argillic/argillic alteration. The Seongsan system evolved during post volcanic hydrothermal activity for at least 10 Ma in the Campanian stage of the late Cretaceous.The Seongsan hydrothermal system shows the rare and unique occurrence of superimposed high to low (intermediate) sulfidation episodes, which persisted for about 10 Ma. 相似文献
7.
Kalin Kouzmanov Robert Moritz Albrecht von Quadt Massimo Chiaradia Irena Peytcheva Denis Fontignie Claire Ramboz Kamen Bogdanov 《Mineralium Deposita》2009,44(6):611-646
Vlaykov Vruh–Elshitsa represents the best example of paired porphyry Cu and epithermal Cu–Au deposits within the Late Cretaceous
Apuseni–Banat–Timok–Srednogorie magmatic and metallogenic belt of Eastern Europe. The two deposits are part of the NW trending
Panagyurishte magmato-tectonic corridor of central Bulgaria. The deposits were formed along the SW flank of the Elshitsa volcano-intrusive
complex and are spatially associated with N110-120-trending hypabyssal and subvolcanic bodies of granodioritic composition.
At Elshitsa, more than ten lenticular to columnar massive ore bodies are discordant with respect to the host rock and are
structurally controlled. A particular feature of the mineralization is the overprinting of an early stage high-sulfidation
mineral assemblage (pyrite ± enargite ± covellite ± goldfieldite) by an intermediate-sulfidation paragenesis with a characteristic
Cu–Bi–Te–Pb–Zn signature forming the main economic parts of the ore bodies. The two stages of mineralization produced two
compositionally different types of ores—massive pyrite and copper–pyrite bodies. Vlaykov Vruh shares features with typical
porphyry Cu systems. Their common geological and structural setting, ore-forming processes, and paragenesis, as well as the
observed alteration and geochemical lateral and vertical zonation, allow us to interpret the Elshitsa and Vlaykov Vruh deposits
as the deep part of a high-sulfidation epithermal system and its spatially and genetically related porphyry Cu counterpart,
respectively. The magmatic–hydrothermal system at Vlaykov Vruh–Elshitsa produced much smaller deposits than similar complexes
in the northern part of the Panagyurishte district (Chelopech, Elatsite, Assarel). Magma chemistry and isotopic signature
are some of the main differences between the northern and southern parts of the district. Major and trace element geochemistry
of the Elshitsa magmatic complex are indicative for the medium- to high-K calc-alkaline character of the magmas. 87Sr/86Sr(i) ratios of igneous rocks in the range of 0.70464 to 0.70612 and 143Nd/144Nd(i) ratios in the range of 0.51241 to 0.51255 indicate mixed crustal–mantle components of the magmas dominated by mantellic signatures.
The epsilon Hf composition of magmatic zircons (+6.2 to +9.6) also suggests mixed mantellic–crustal sources of the magmas.
However, Pb isotopic signatures of whole rocks (206Pb/204Pb = 18.13–18.64, 207Pb/204Pb = 15.58–15.64, and 208Pb/204Pb = 37.69–38.56) along with common inheritance component detected in magmatic zircons also imply assimilation processes of
pre-Variscan and Variscan basement at various scales. U–Pb zircon and rutile dating allowed determination of the timing of
porphyry ore formation at Vlaykov Vruh (85.6 ± 0.9 Ma), which immediately followed the crystallization of the subvolcanic
dacitic bodies at Elshitsa (86.11 ± 0.23 Ma) and the Elshitsa granite (86.62 ± 0.02 Ma). Strontium isotope analyses of hydrothermal
sulfates and carbonates (87Sr/86Sr = 0.70581–0.70729) suggest large-scale interaction between mineralizing fluids and basement lithologies at Elshitsa–Vlaykov
Vruh. Lead isotope compositions of hydrothermal sulfides (206Pb/204Pb = 18.432–18.534, 207Pb/204Pb = 15.608–15.647, and 208Pb/204Pb = 37.497–38.630) allow attribution of ore-formation in the porphyry and epithermal deposits in the Southern Panagyurishte
district to a single metallogenic event with a common source of metals. 相似文献
8.
A. V. Volkov A. A. Sidorov N. E. Savva E. E. Kolova K. Yu. Murashov 《Doklady Earth Sciences》2017,472(2):178-183
The geochemical features and conditions of formation of the Paleozoic epithermal Au–Ag mineralization in the pre-accretion Kedon (D2–3) volcanoplutonic belt located within the Omolon craton terrain are described. The new data on the composition and contents of trace and rare-earth elements (REEs) in igneous ores of epithermal deposits is provided. The elevated grades of a wide range of trace elements as compared to the average values of the upper crust have been identified. 相似文献
9.
《International Geology Review》2012,54(3):302-312
Porphyry Cu (Mo–Au) deposits in the Himalayan–Tibetan orogen formed during the Late Triassic, Early Cretaceous, Eocene, Oligocene, and Miocene and can be classified into different metallogenic belts according to their petrologic features, mineralization ages, and tectonic settings. A close spatial relationship to regional strike–slip faults is evident in all five belts. Porphyry Cu (Mo–Au) deposits exist in a wide range of tectonic environments, including island arc, syn-collision, post-collisional convergence, and continental-transform plate boundaries. Porphyry Cu deposits cluster in the southernmost part of the Yidun–Zhongdian Belt, along the N–S-trending Gaze River dextral strike–slip fault. Porphyry Cu deposits in the Lijiang–Jinping Belt lie along the Ailaoshan–Red River continental–transform shear zone and the associated strike–slip faults. The Yulong–Malasongduo porphyry belt is controlled by the Cesuo Fault, a NNW-trending regional dextral transcurrent fault that is associated with Palaeogene westward continental oblique subduction along the Jinsha suture. In the Gangdis Belt, Miocene porphyry Cu deposits are localized along N–S-trending normal faults, which were produced by transpression within the regional NW–SE-trending Karakoram–Jiali fault zone (KJFZ). A close spatial relationship between porphyry Cu deposits and strike–slip faults also exists for the Bangong–Nujiang Belt. 相似文献
10.
At Colquijirca, central Peru, a predominantly dacitic Miocene diatreme-dome complex of 12.4 to 12.7 Ma (40Ar/39Ar biotite ages), is spatially related to two distinct mineralization types. Disseminated Au–(Ag) associated with advanced argillic alteration and local vuggy silica typical of high- sulfidation epithermal ores are hosted exclusively within the volcanic center at Marcapunta. A second economically more important mineralization type is characterized as "Cordilleran base metal lode and replacement deposits." These ores are hosted in Mesozoic and Cenozoic carbonate rocks surrounding the diatreme-dome complex and are zoned outward from pyrite–enargite–quartz–alunite to pyrite–chalcopyrite–dickite–kaolinite to pyrite–sphalerite–galena–kaolinite–siderite. Alunite samples related to the Au–(Ag) epithermal ores have been dated by the 40Ar/39Ar method at 11.3–11.6 Ma and those from the Cordilleran base metal ores in the northern part of the district (Smelter and Colquijirca) at 10.6–10.8 Ma. The significant time gap (~0.5 My) between the ages of the two mineralization types in the Colquijirca district indicates they were formed by different hydrothermal events within the same magmatic cycle. The estimated time interval between the younger mineralization event (base metal mineralization) at ~10.6 Ma and the ages of ~12.5 Ma obtained on biotites from unmineralized dacitic domes flanking the vicinity of the diatreme vent, suggest a minimum duration of the magmatic–hydrothermal cycle of around 2 Ma. This study on the Colquijirca district offers for the first time precise absolute ages indicating that the Cordilleran base metal lode and replacement deposits were formed by a late hydrothermal event in an intrusive-related district, in this case post Au–(Ag) high-sulfidation epithermal mineralization.Electronic Supplementary Material Supplementary material is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.Editorial handling: O. Christensen 相似文献
11.
The Seongsan district in the Jindo–Haenam basin of southwest Korea comprises Precambrian gneissic basement, overlain and intruded by Cretaceous volcanic (98–71 Ma) and plutonic (86–68 Ma) rocks, respectively. Haenam Formation volcanic and volcaniclastic rocks are the dominant rock type exposed in the district and are the main host to high-sulphidation (82–77 Ma) and low-sulphidation (79–73 Ma) epithermal deposits. The Eunsan and Moisan low-sulphidation epithermal deposits have similar vein mineralogy, zoned hydrothermal alteration mineral assemblages, structural framework and interpreted deformation events. These similarities suggest that they formed by district-scale hydrothermal fluid flow at about 77.5 Ma. At this time, ore fluid movement along subvertical WNW-trending faults was particularly focussed in dilatant fault bends, jogs, and at intersections with N-trending splays. At Eunsan, Au–Ag ore shoots coincide with these areas of structural complexity, whereas at Moisan, narrower ore zones correspond with several parallel, poorly connected veins. A secondary control on the location of ore zones is the intersection between mineralised WNW-striking structures and rocks of the Haenam Formation. The higher permeability and porosity of these rocks, in comparison with mudstones and siltstones of the underlying Uhangri Formation, resulted in the more efficient lateral migration of ore fluids away from subvertical faults and into wall rocks. The intersection between subvertical WNW-striking faults and the gently dipping Haenam Formation imparts a low angle SW plunge to both ore bodies. WNW-striking post-mineralisation faults displace ore zones up to 100 m and complicate the along-strike exploration and mining of WNW-trending ore zones. Future exploration strategies in the district involve the systematic testing of WNW-trending mineralised structures along strike from known deposits, with a particular emphasis on identifying structurally complex areas that experienced local dilation during the mineralisation event. Poorly exposed regions have historically been under-explored. However, based on the proposed exploration model for the Eunsan and Moisan deposits, these areas of poor outcrop are now considered important target areas for hidden ore bodies using ground-based geophysical exploration tools, such as seismic surveys. 相似文献
12.
13.
Doklady Earth Sciences - The exsolution texture of the Au–Ag–Cu–Pt solid solution is represented by numerous lamellae of cupreous gold in the Ag–Au–Pd matrix. On... 相似文献
14.
Thierry Bineli Betsi David Lentz Massimo Chiaradia Kurt Kyser Robert A. Creaser 《Mineralium Deposita》2013,48(8):991-1017
The genesis of mineralized systems across the Mountain Freegold area, in the Dawson Range Cu–Au?±?Mo Belt of the Tintina Au province was constrained using Pb and stable isotope compositions and Ar–Ar and Re–Os geochronology. Pb isotope compositions of sulfides span a wide compositional range (206Pb/204Pb, 18.669–19.861; 208Pb/204Pb, 38.400–39.238) that overlaps the compositions of the spatially associated igneous rocks, thus indicating a magmatic origin for Pb and probably the other metals. Sulfur isotopic compositions of sulfide minerals are broadly similar and their δ34S (Vienna-Canyon Diablo Troilite (V-CDT)) values range from ?1.4 to 3.6 ‰ consistent with the magmatic range, with the exception of stibnite from a Au–Sb–quartz vein, which has δ34S values between ?8.1 and ?3.1 ‰. The δ34S values of sulfates coexisting with sulfide are between 11.2 and 14.2 ‰; whereas, those from the weathering zone range from 3.7 to 4.3 ‰, indicating supergene sulfates derived from oxidation of hypogene sulfides. The δ13C (Vienna Peedee Belemnite (VPDB)) values of carbonate range from ?4.9 to 1.1 ‰ and are higher than magmatic values. The δ18O (V-SMOW) values of magmatic quartz phenocrysts and magmatic least-altered rocks vary between 6.2 and 10.1 ‰ and between 5.0 and 10.1 ‰, respectively, whereas altered magmatic rocks and hydrothermal minerals (quartz and magnetite) are relatively 18O-depleted (4.2 to 7.9 ‰ and ?6.3 to 1.5 ‰, respectively). Hydrogen isotope compositions of both least-altered and altered igneous rock samples are D-depleted (from ?133 to ?161 ‰ Vienna-Standard Mean Ocean Water (V-SMOW)), consistent with differential magma degassing and/or post-crystallization exchange between the rocks and meteoric ground water. Zircon from a chlorite-altered dike has a U–Pb crystallization age of 108.7?±?0.4 Ma; whereas, the same sample yielded a whole-rock Ar–Ar plateau age of 76.25?±?0.53 Ma. Likewise, molybdenite Re–Os model ages range from 75.8 to 78.2 Ma, indicating the mineralizing events are genetically related to Late Cretaceous volcano-plutonic intrusions in the area. The molybdenite Re–Os ages difference between the nearby Nucleus (75.9?±?0.3 to 76.2?±?0.3 Ma) and Revenue (77.9?±?0.3 to 78.2?±?0.3 Ma) mineral occurrences suggests an episodic mineralized system with two pulses of hydrothermal fluids separated by at least 2 Ma. This, in combination with geological features suggest the Nucleus deposit represents the apical and younger portion of the Revenue–Nucleus magmatic-hydrothermal system and may suggest an evolution from the porphyry to the epithermal environments. 相似文献
15.
《International Geology Review》2012,54(6):657-691
The chemical compositions of rock-forming minerals have been determined for both altered and least-altered igneous rocks spatially associated with numerous mineralized zones (Nucleus Au–Bi–Cu–As deposit, Revenue Au ± Cu and Stoddart Cu–Mo ± W mineral occurrences, and Laforma Au–Ag deposit) across the Freegold Mountain area, Yukon, Canada. Within the study area, K-feldspar has a narrow compositional range (89.4–91% Or), whereas plagioclase spans a wide range (4.4–70.07% An). In all of the investigated samples, T Ab = T An = T Or, suggesting that magmatic equilibrium between the coexisting plagioclase and K-feldspar was maintained. Igneous amphibole phenocrysts from hypabyssal dikes are typically calcic, whereas the Stoddart Cu–Mo ± W, Laforma Au–Ag, and Goldy Au mineralization are associated with Mg-enriched primary amphibole of edenite composition, and Au–Bi–Cu–As mineralization from Nucleus is related to Al-enriched primary amphibole of ferropargasite composition. Primary biotite phenocrysts across the Freegold Mountain area re-equilibrated with oxidized magma (f(O2) values between 10–13 and 10–11.5 bars, lying between the Ni/NiO and the magnetite/haematite buffers). However, biotite and amphibole phenocrysts from Stoddart, Goldy, Laforma, and the Highway zones crystallized from a more oxidized magma, as indicated by their elevated X Mg up to 0.65, relative to biotite and hornblende from Nucleus and Revenue characterized by a lower X Mg (typically < 0.50). This suggests that various sources and (or) rapid emplacement were involved in magma genesis, as further supported by the considerable variation of pressure (1.8–7.3 kb) of amphibole crystallization and of the total Al content in least-altered biotite (2.6–2.9 afu) within the Freegold Mountain area. Biotite and apatite equilibrated within the T range of 520–780°C, consistent with temperatures of equilibration between ilmenite and magnetite, and their compositions indicate that they formed from an oxidized I-type magma. Magma differentiated by fractional crystallization (indicated by the presence of normally zoned plagioclase with Ca-rich cores and Na-enriched outer rims) and multiple magma mixing (supported by the presence of reversed zoned plagioclase and coexistence of normally and reversely zoned plagioclase). Lower X Mg biotite associated with the mineralized (Cu–Mo ± W) potassic alteration incorporated more F and Cl relative to least-altered biotite with higher X Mg. In both Nucleus and Revenue Au–Cu mineralizations, secondary biotite composition varies with respect to the associated alteration mineral assemblages. Although secondary biotite in the skarn re-equilibrated with F-poor fluids, secondary biotite from the pervasive biotitization is related to F- and Cl-enriched fluids, and secondary biotite from the phyllitic zone is related to F-, Cl-, and Mg-depleted fluids, thus consistent with a change in mineralizing fluid composition during mineralization. 相似文献
16.
Carolina Penteado Natividade Moreto Lena V. S. Monteiro Roberto P. Xavier Wagner S. Amaral Ticiano José S. dos Santos Caetano Juliani Carlos Roberto de Souza Filho 《Mineralium Deposita》2011,46(7):789-811
The Bacaba iron oxide–copper–gold deposit, situated within a WNW–ESE-striking shear zone in the Carajás Domain, Carajás Mineral
Province, is hosted by the Serra Dourada Granite, the Bacaba Tonalite, and crosscutting gabbro intrusions, which were intensely
affected by sodic (albite–scapolite), potassic, chloritic, and hydrolytic hydrothermal alteration. This deposit is located
7 km northeast of the world-class Sossego iron oxide–copper–gold deposit and might represent a distal and deeper portion of
the same or related hydrothermal system. The U–Pb laser ablation inductively coupled plasma–mass spectrometry data for zircon
from a sodically altered sample of the Serra Dourada Granite yielded a 2,860±22 Ma (MSWD=11.5) age. Three samples from the
Bacaba Tonalite, including one with potassic alteration and two with Cu–Au mineralization, rendered the 3,001.2±3.6 Ma (MSWD=1.8),
2,990.9±5.8 Ma (MSWD=1.9), and 3,004.6±9 Ma (MSWD=2.2) ages, respectively. The ca. 2.86 and ca. 3.0 Ga ages are interpreted
as the timing of the igneous crystallization of the Serra Dourada Granite and the Bacaba Tonalite, respectively, and represent
the oldest magmatic events recognized in the Carajás Domain. The Serra Dourada Granite and the Bacaba Tonalite are interpreted
to greatly predate the genesis of the Bacaba deposit. A genetic link is improbable in the light of the similarities with the
Sossego deposit, which is also hosted by younger ca. 2.76 Ga metavolcano-sedimentary units of the Itacaiúnas Supergroup. In
this context, the iron oxide–copper–gold deposits in the southern sector of the Carajás Domain could be mainly controlled
by important crustal discontinuities, such as a regional shear zone, rather than be associated with a particular rock type.
These results expand the potential for occurrences of iron oxide–copper–gold deposits within the Mesoarchean basement rocks
underlying the Carajás Basin, particularly those crosscut by Neoarchean shear zones. 相似文献
17.
The Osborne iron oxide–copper–gold (IOCG) deposit is hosted by amphibolite facies metasedimentary rocks and associated with
pegmatite sheets formed by anatexis during peak metamorphism. Eleven samples of ore-related hydrothermal quartz and two pegmatitic
quartz–feldspar samples contain similarly complex fluid inclusion assemblages that include variably saline (<12–65 wt% salts)
aqueous and liquid carbon dioxide varieties that are typical of IOCG mineralisation. The diverse fluid inclusion types present
in each of these different samples have been investigated by neutron-activated noble gas analysis using a combination of semi-selective
thermal and mechanical decrepitation techniques. Ore-related quartz contains aqueous and carbonic fluid inclusions that have
similar 40Ar/36Ar values of between 300 and 2,200. The highest-salinity fluid inclusions (47–65 wt% salts) have calculated 36Ar concentrations of approximately 1–5 ppb, which are more variable than air-saturated water (ASW = 1.3–2.7 ppb). These fluid
inclusions have extremely variable Br/Cl values of between 3.8 × 10−3 and 0.3 × 10−3, and I/Cl values of between 27 × 10−6 and 2.4 × 10−6 (all ratios are molar). Fluid inclusions in the two pegmatite samples have similar 40Ar/36Ar values of ≤1,700 and an overlapping range of Br/Cl and I/Cl values. High-salinity fluid inclusions in the pegmatite samples
have 2.5–21 ppb 36Ar, that overlap the range determined for ore-related samples in only one case. The fluid inclusions in both sample groups
have 84Kr/36Ar and 129Xe/36Ar ratios that are mainly in the range of air and air-saturated water and are similar to mid-crustal rocks and fluids from
other settings. The uniformly low 40Ar/36Ar values (<2,200) and extremely variable Br/Cl and I/Cl values do not favour a singular or dominant fluid origin from basement-
or mantle-derived magmatic fluids related to A-type magmatism. Instead, the data are compatible with the involvement of metamorphic
fluids that have interacted with anatectic melts to variable extents. The ‘metamorphic’ fluids probably represent a mixture
of (1) inherited sedimentary pore fluids and (2) locally derived metamorphic volatilisation products. The lowest Br/Cl and
I/Cl values and the ultra-high salinities are most easily explained by the dissolution of evaporites. The data demonstrate
that externally derived magmatic fluids are not a ubiquitous component of IOCG ore-forming systems, but are compatible with
models in which IOCG mineralisation is localised at sites of mixing between fluids of different origin.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorised users. 相似文献
18.
The Guanajuato epithermal district is one of the largest silver producers in Mexico. Mineralization occurs along three main vein systems trending dominantly northwest–southeast: the central Veta Madre, the La Luz system to the northwest, and the Sierra system to the east. Mineralization consists dominantly of silver sulfides and sulfosalts, base metal sulfides (mostly chalcopyrite, galena, sphalerite, and pyrite), and electrum. There is a broad zonation of metal distribution, with up to 10 % Cu+Pb+Zn in the deeper mines along the northern and central portions of the Veta Madre. Ore occurs in banded veins and breccias and as stockworks, with gangue composed dominantly of quartz and calcite. Host rocks are Mesozoic sedimentary and intrusive igneous rocks and Tertiary volcanic rocks. Most fluid inclusion homogenization temperatures are between 200 and 300 °C, with salinities below 4 wt.% NaCl equivalent. Fluid temperature and salinity decreased with time, from 290 to 240 °C and from 2.5 to 1.1 wt.% NaCl equivalent. Relatively constant fluid inclusion liquid-to-vapor ratios and a trend of decreasing salinity with decreasing temperature and with increasing time suggest dilution of the hydrothermal solutions. However, evidence of boiling (such as quartz and calcite textures and the presence of adularia) is noted along the Veta Madre, particularly at higher elevations. Fluid inclusion and mineralogical evidence for boiling of metal-bearing solutions is found in gold-rich portions of the eastern Sierra system; this part of the system is interpreted as the least eroded part of the district. Oxygen, carbon, and sulfur isotope analysis of host rocks, ore, and gangue minerals and fluid inclusion contents indicate a hydrothermal fluid, with an initial magmatic component that mixed over time with infiltrating meteoric water and underwent exchange with host rocks. Mineral deposition was a result of decreasing activities of sulfur and oxygen, decreasing temperature, increasing pH, and, in places, boiling. 相似文献
19.
I. Subías I. Fanlo E. Mateo K. Billström C. Recio 《Chemie der Erde / Geochemistry》2010,70(2):149-158
The Iberian Range contains abundant Pb–Zn–(Ag)– and Ba-dominated low temperature veins, mostly formed during the Mesozoic. The hydrothermal activity was related to the extensional regime occurring throughout the Variscan basement of Europe, North Africa and the Appalachians. A stable and radiogenic isotopic study of these veins has identified the reservoir/s of mineralizing components involved in the ore-forming processes. Sulphur isotope ratios indicate that the source of mineralizing components for the base metals veins was a mixture of the Palaeozoic country rocks and Variscan ore deposits. In contrast, either Mesozoic seawater or evaporites supplied most of the sulphur for Ba veins, although a minor contribution of isotopically heavy sulphur derived from the basement is envisaged. The lead isotopic data of galenas define a linear trend in the thorogenic diagram, interpreted in terms of mixing of lead from different reservoirs. The main source is related to local sedimentary country rocks, but a minor contribution from igneous rocks cannot be ruled out. Sr isotope ratios of barites also suggest that most of the components were leached from the basement sequence. When the veins are hosted by carbonate rocks, however, a local source of metals is also available. 相似文献
20.
《International Geology Review》2012,54(7):842-862
During late Palaeozoic time, extensive magmatism and associated ore deposits were developed in the eastern Tianshan orogenic belt (ETOB), Northwest China, which is part of the Central Asian Orogenic Belt. To understand the petrogenesis of the intrusions in this area, we performed in situ zircon U–Pb and Hf isotopic analyses on the Tuwu–Yandong (TW–YD) stocks and the Xianshan, Hulu, Luodong, and Poshi batholiths. Two major suites of intrusive rocks have been recognized in the ETOB: (1) 338–339 Ma plagiogranite porphyries and 265–300 Ma ultramafic and mafic rocks, of which the former are associated with 323 Ma porphyry Cu–Mo deposits and have enriched radiogenic Hf isotopic compositions (?Hf(t) = +11.5 to +15.6), which were derived from a depleted mantle source, whereas the latter are associated with 265–300 Ma magmatic Ni–Cu deposits and have variable Hf isotopic compositions (?Hf(t) = ?10.3 to +14.3), indicating an origin via the hybridization of depleted mantle magma and variable amounts of ancient lower-crustal components. The proposed magma sources, combined with the geochemical differences between these two suites of intrusive rocks, indicate that in the lower to middle Carboniferous, a N-dipping subduction zone beneath the Dananhu arc triggered the emplacement of granitic porphyries in the Tousuquan and Dananhu island arc belt in the east Tianshan, leading to the formation of the TW and YD porphyry Cu–Mo deposits. In the Upper Carboniferous to Lower Permian, large mafic–ultramafic complexes were emplaced during the closure of the ancient Tianshan Ocean, resulting in the formation of several magmatic Cu–Ni sulphide deposits. 相似文献