共查询到20条相似文献,搜索用时 0 毫秒
1.
In recent years, several studies focused on the detection of hydrocarbon pollution in the environment using hyperspectral remote sensing. Particularly the indirect detection of hydrocarbon pollution, using vegetation reflectance in the red edge region, has been studied extensively. Bioremediation is one of the methods that can be applied to clean up polluted sites. So far, there have been no studies on monitoring of bioremediation using (hyperspectral) remote sensing. This study evaluates the feasibility of hyperspectral remote sensing for monitoring the effect of bioremediation over time. Benzene leakage at connection points along a pipeline was monitored by comparing the red edge position (REP) in 2005 and 2008 using HyMap airborne hyperspectral images. REP values were normalized in order to enhance local variations caused by a change in benzene concentrations. 11 out of 17 locations were classified correctly as remediated, still polluted, or still clean, with a total accuracy of 65%. When only polluted locations that were remediated were taken into account, the (user's) accuracy was 71%. 相似文献
2.
With the maturation of satellite technology,Hyperspectral Remote Sensing(HRS)platforms have developed from the initial ground-based and airborne platforms into spaceborne plat-forms,which greatly promotes the civil application of HRS imagery in the fields of agriculture,forestry,and environmental monitoring.China is playing an important role in this evolution,especially in recent years,with the successful launch and operation of a series of civil hyper-spectral spacecraft and satellites,including the Shenzhou-3 spacecraft,the Gaofen-5 satellite,the SPARK satellite,the Zhuhai-1 satellite network for environmental and resources monitoring,the FengYun series of satellites for meteorological observation,and the Chang'E series of spacecraft for planetary exploration.The Chinese spaceborne HRS platforms have various new characteristics,such as the wide swath width,high spatial resolution,wide spectral range,hyperspectral satellite networks,and microsatellites.This paper focuses on the recent progress in Chinese spaceborne HRS,from the aspects of the typical satellite systems,the data processing,and the applications.In addition,the future development trends of HRS in China are also discussed and analyzed. 相似文献
3.
J.G.P.W. Clevers L. Kooistra M.E. Schaepman 《International Journal of Applied Earth Observation and Geoinformation》2010
Hyperspectral remote sensing has demonstrated great potential for accurate retrieval of canopy water content (CWC). This CWC is defined by the product of the leaf equivalent water thickness (EWT) and the leaf area index (LAI). In this paper, in particular the spectral information provided by the canopy water absorption feature at 970 nm for estimating and predicting CWC was studied using a modelling approach and in situ spectroradiometric measurements. The relationship of the first derivative at the right slope of the 970 nm water absorption feature with CWC was investigated with the PROSAIL radiative transfer model and tested for field spectroradiometer measurements on two test sites. The first site was a heterogeneous floodplain with natural vegetation like grasses and various shrubs. The second site was an extensively grazed fen meadow. 相似文献
4.
天宫一号高光谱成像仪具有空间分辨率高、光谱分辨率高、图谱合一等特性,在中国航天高光谱领域具有里程碑的意义。针对一般遥感场景分类数据集尺度单一、光谱分辨率较低等问题,本文提出基于天宫一号的多谱段、高空间分辨率、多时相高光谱遥感场景分类数据集(TG1HRSSC)。利用天宫一号高光谱成像仪获取的高质量数据,经过辐射校正、几何校正、空间裁剪、波段筛选、数据质量分析与控制等,制作了一批通用的航天高光谱遥感场景分类数据集,通过载人航天空间应用数据推广服务平台(http://www.msadc.cn [2019-09-10])进行分发和共享。该数据集包括天宫一号高光谱成像仪获取的城镇、农田、林地、养殖塘、荒漠、湖泊、河流、港口、机场等9个典型地物场景的204个高光谱影像数据,其中5 m分辨率全色谱段1个波段、10 m分辨率可见近红外谱段54个有效波段以及20 m分辨率短波红外谱段52个有效波段。研究利用AlexNet、VGG-VD-16、GoogLeNet等深度学习算法网络对构建的数据集进行场景分类的试验,结果表明该数据集的场景分类应用实现较好效果。由于该数据集具备高分辨、高光谱等特征优势,未来在语义理解、多目标检测等方面有着广泛的应用价值。 相似文献
5.
6.
Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment 总被引:3,自引:0,他引:3
This is a review of the latest developments in different fields of remote sensing for forest biomass mapping. The main fields of research within the last decade have focused on the use of small footprint airborne laser scanning systems, polarimetric synthetic radar interferometry and hyperspectral data. Parallel developments in the field of digital airborne camera systems, digital photogrammetry and very high resolution multispectral data have taken place and have also proven themselves suitable for forest mapping issues. Forest mapping is a wide field and a variety of forest parameters can be mapped or modelled based on remote sensing information alone or combined with field data. The most common information required about a forest is related to its wood production and environmental aspects. In this paper, we will focus on the potential of advanced remote sensing techniques to assess forest biomass. This information is especially required by the REDD (reducing of emission from avoided deforestation and degradation) process. For this reason, new types of remote sensing data such as fullwave laser scanning data, polarimetric radar interferometry (polarimetric systhetic aperture interferometry, PolInSAR) and hyperspectral data are the focus of the research. In recent times, a few state-of-the-art articles in the field of airborne laser scanning for forest applications have been published. The current paper will provide a state-of-the-art review of remote sensing with a particular focus on biomass estimation, including new findings with fullwave airborne laser scanning, hyperspectral and polarimetric synthetic aperture radar interferometry. A synthesis of the actual findings and an outline of future developments will be presented. 相似文献
7.
高光谱成像遥感载荷技术的现状与发展 总被引:1,自引:0,他引:1
高光谱成像技术可同时获取地物的几何、辐射和光谱信息,集相机、辐射计和光谱仪能力于一体,相比光学空间二维成像,可对地物进行空间和光谱三维成像,在一定的空间分辨率下,获取宽谱段范围内地物独特的连续特征光谱,对地物的精细分类和识别具有突出的优势,目前已成为对地遥感的重要前沿技术手段,在自然资源调查、生态环境监测、农林牧渔、海洋与海岸带监测等领域发挥着越来越重要的作用。随着高光谱遥感应用的深入研究,对高光谱成像遥感仪器的光谱范围、幅宽、光谱分辨率、空间分辨率、时间分辨率与定标精度等指标提出了新的要求。同时满足这些相互制约的参数指标,是国内外高光谱载荷研制中一直难以突破的技术难点。本文主要对国内外的高光谱成像遥感载荷技术进行了综述,介绍了国内外典型的机载、星载高光谱成像遥感仪器,以及近年来发射、正在研制和计划发展的星载高光谱成像载荷,并分析了这些载荷的技术方案、性能指标和应用效果;介绍了声光调谐(AOTF)、液晶调谐(LCTF)、法布里—珀罗调谐(FPTF),渐变式(LVF)和阶跃式(ISF)光楔滤光片,压缩感知光谱成像等新型分光技术,并分析了它们各自的技术优缺点以及应用于高光谱成像的可行性和现状;最后展望了高光谱成像载荷技术的发展趋势。 相似文献
8.
高光谱遥感影像分类研究进展 总被引:4,自引:0,他引:4
随着模式识别、机器学习、遥感技术等相关学科领域的发展,高光谱遥感影像分类研究取得快速进展。本文系统总结和评述了当前高光谱遥感影像分类的相关研究进展,在总结分类策略的基础上,重点从以核方法为代表的新型分类器设计、特征挖掘、空间-光谱分类、基于主动学习和半监督学习的分类、基于稀疏表达的分类、多分类器集成六个方面对高光谱影像像素级分类最新研究进行了综述。针对今后的研究方向,指出高光谱遥感影像分类一方面要适应大数据、智能化高光谱对地观测的发展前沿,继续引入机器学习领域的新理论、新方法,综合利用多源遥感数据、多维特征空间互补的优势,提高分类精度、分类器泛化能力和自动化程度;另一方面要关注高光谱遥感应用的需求,突出高光谱遥感记录精细光谱特征的优势,针对应用需求发展有效的分类方法。 相似文献
9.
As a widely used approach for feature extraction and data reduction, Principal Components Analysis (PCA) suffers from high computational cost, large memory requirement and low efficacy in dealing with large dimensional datasets such as Hyperspectral Imaging (HSI). Consequently, a novel Folded-PCA is proposed, where the spectral vector is folded into a matrix to allow the covariance matrix to be determined more efficiently. With this matrix-based representation, both global and local structures are extracted to provide additional information for data classification. Moreover, both the computational cost and the memory requirement have been significantly reduced. Using Support Vector Machine (SVM) for classification on two well-known HSI datasets and one Synthetic Aperture Radar (SAR) dataset in remote sensing, quantitative results are generated for objective evaluations. Comprehensive results have indicated that the proposed Folded-PCA approach not only outperforms the conventional PCA but also the baseline approach where the whole feature sets are used. 相似文献
10.
端元提取技术是混合像元分解中重要的步骤之一,传统的端元提取方法仅考虑了像元的光谱信息.本文将数学形态学算子扩展到高光谱空间,并应用到端元提取技术中,可以顾及像元的上下文信息.利用AVIRIS高光谱仿真数据对算法进行了实验验证,结果表明本文算法具有较强的抗噪能力和较高的可靠性.在此基础上,结合徐州地区的EO-1 Hyperion高光谱遥感图像,使用本文算法进行了端元提取应用研究,将实验结果与纯净像元指数、顶点成分分析方法做了对比分析和精度评价,证明本文算法是一种可靠的高光谱遥感图像端元提取技术. 相似文献
11.
Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing 总被引:4,自引:0,他引:4
Minghua Zhang Zhihao Qin Xue Liu Susan L. Ustin 《International Journal of Applied Earth Observation and Geoinformation》2003,4(4):295-310
Large-scale farming of agricultural crops requires on-time detection of diseases for pest management. Hyperspectral remote sensing data taken from low-altitude flights usually have high spectral and spatial resolutions, which can be very useful in detecting stress in green vegetation. In this study, we used late blight in tomatoes to illustrate the capability of applying hyperspectral remote sensing to monitor crop disease in the field scale and to develop the methodologies for the purpose. A series of field experiments was conducted to collect the canopy spectral reflectance of tomato plants in a diseased tomato field in Salinas Valley of California. The disease severity varied from stage 1 (the light symptom), to stage 4 (the sever damage). The economic damage of the crop caused by the disease is around the disease stage 3. An airborne visible infrared imaging spectrometer (AVIRIS) image with 224 bands within the wavelength range of 0.4–2.5 μm was acquired during the growing season when the field data were collected. The spectral reflectance of the field samples indicated that the near infrared (NIR) region, especially 0.7–1.3 μm, was much more valuable than the visible range to detect crop disease. The difference of spectral reflectance in visible range between health plants and the infected ones at stage 3 was only 1.19%, while the difference in the NIR region was high, 10%. We developed an approach including the minimum noise fraction (MNF) transformation, multi-dimensional visualization, pure pixels endmember selection and spectral angle mapping (SAM) to process the hyperspectral image for identification of diseased tomato plants. The results of MNF transformation indicated that the first 28 eigenimages contain useful information for classification of the pixels and the rest were mainly noise-dominated due to their low eigenvalues that had few signals. Therefore, the 28 signal eigenimages were used to generate a multi-dimensional visualization space for endmember spectra selection and SAM. Classification with the SAM technique of plants’ spectra showed that the late blight diseased tomatoes at stage 3 or above could be separated from the healthy plants while the less infected plants (at stage 1 or 2) were difficult to separate from the healthy plants. The results of the image analysis were consistent with the field spectra. The mapped disease distribution at stage 3 or above from the image showed an accurate conformation of late blight occurrence in the field. This result not only confirmed the capability of hyperspectral remote sensing in detecting crop disease for precision disease management in the real world, but also demonstrated that the spectra-based classification approach is an applicable method to crop disease identification. 相似文献
12.
高光谱遥感图像的端元递进提取算法 总被引:1,自引:1,他引:1
针对高光谱遥感图像中可能并不存在图像端元这一问题,试探的提出一种基于线性混合模型下对初步提取的最近似于端元的像元进行再分析的端元提取算法,即高光谱遥感图像的端元递进提取算法.首先针对3个端元线性混合的图像进行提取,在图像中找到最大近似于端元的像元,利用凸面单形体的几何性质,找出初步提取像元附近位于图像端元构成的凸面单形体边界上的像元,通过计算图像端元在边界像元中的含量,应用线性反解提取出图像端元.模拟图像中的初步结果表明在不存在图像端元的图像中,该算法可以有效的提取3个端元,应用于实际Hyperion图像取得了较好的实验效果. 相似文献
13.
14.
15.
高光谱遥感影像混合像元分解研究进展 总被引:5,自引:1,他引:5
受高光谱成像仪低空间分辨率及复杂地物的影响,高光谱遥感图像存在大量混合像元。为提高地表分类精度以及满足亚像元级目标探测的需求,混合像元分解技术一直是高光谱遥感研究热点之一。本文主要对高光谱混合像元分解技术中的核心问题:端元数目估计、端元提取算法、丰度估计算法进行综述,系统地分析了各种典型算法的原理及优缺点,进一步阐述研究过程中建立高精度遥感混合反演模型与遥感产品业务化中的混合像元分解技术难题,同时针对今后混合像元分解技术发展方向,指出在继续引入新型算法理论方法基础上,结合用户应用需求,推进高光谱混合像元分解算法业务化应用,为高光谱遥感工程化应用提供支持。 相似文献
16.
17.
18.
针对高光谱遥感图像易受噪声干扰,本文提出了一种基于非下采样Contourlet变换NSCT(Nonsubsampled Contourlet Transform)和核主成分分析KPCA(Kernel Principal Component Analysis)的去噪方法。首先对高光谱各波段图像进行NSCT分解;然后利用KPCA对NSCT系数进行处理,并在KPCA重构时依据各类噪声的特性选取合适的主成分;最后用处理过的系数进行逆变换得到去噪图像。实验结果表明,本文方法抑制了高光谱遥感图像中的噪声干扰,较完整地保留了原始数据的有效信息。 相似文献
19.
本文利用高光谱遥感异常目标探测理论,探讨了目前已有的几种异常目标探测方法;通过对3组数据进行试验,并从探测率和虚警率、ROC曲线及其下的面积及算法的运行时间,对几种异常检测算法的检测性能进行对比分析;最后基于统计模型和基于表示模型对3组数据的检测效果进行对比分析,从而得出适合于不同数据的检测方法,为高光谱遥感异常目标探... 相似文献
20.
矢量C-V模型的高光谱遥感影像分割 总被引:1,自引:0,他引:1
高光谱遥感影像除了包含普通2维影像所具有的空间信息还包含了1维光谱信息,传统的针对2维影像的分割方法不能很好地应用于高光谱遥感影像。为此,本文提出一种能够同时处理多波段影像的高光谱遥感影像矢量C-V模型分割方法。首先选出高光谱遥感影像中目标与背景对比度较大的波段,并通过计算波段相关系数,去除其中的冗余信息形成新的波段组合,进而根据所确定的波段组合构建高光谱遥感影像矢量矩阵;在此基础上,构造基于该矢量矩阵的矢量C-V分割模型。模型中通过引入基于梯度的边缘引导函数,在保留传统C-V模型基于区域信息进行影像分割的基础上,利用影像的边缘细节信息,增强了模型在异质区域和复杂背景情况下对目标边缘的捕捉能力,提高了对高光谱遥感影像的分割精度和速度。最后利用HYPERION数据进行仿真实验,并将实验结果和传统C-V模型和相关方法进行了对比,结果表明,本文方法能够在短时间内有效地分割高光谱遥感影像,与传统方法相比,具有分割精度更高运算速度更快的特点。 相似文献