首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
淮南煤田现今地温场特征   总被引:1,自引:0,他引:1       下载免费PDF全文
在系统分析淮南煤田大量地面钻孔井温测井数据和井下巷道围岩温度测试数据的基础上,结合58块岩石样品的热导率测试结果,全面阐述了该区现今地温梯度和大地热流的分布特征。研究表明,淮南煤田现今地温梯度的众值介于2.50~3.50℃/hm之间,平均地温梯度为2.9℃/hm;大地热流值变化范围为31.87~83.9 m W/m2,平均热流值为63.69 m W/m2,地温梯度和热流值区均高于淮北煤田;大地热流受地温梯度控制明显,其变化特征和地温梯度分布较为相似,整体表现为中东部高,西部其次,东南部最小的特征。分析揭示,区内现今地温场和热流分布主要受区域地质背景和区内构造格局的控制。  相似文献   

2.
基于可靠的浅层地温测量数据,系统分析西安市浅层地温场的分布特征及其影响因素。分析得出:受区域构造的影响,位于断裂带附近的监测井地温梯度值均大于6℃/100m,其他区域监测井地温梯度值在1.5~2.0℃/100m之间,全区平均地表热流值为78.8 mw/m2,高于全球大地热流平均值(61.1mw/m2);区域地下水、岩土体岩性及结构也是浅层地温场分布的重要影响因素。  相似文献   

3.
北京平原区浅层地温场特征及其影响因素研究   总被引:7,自引:3,他引:4       下载免费PDF全文
本文在大量钻孔测温资料的基础上,系统分析了平原区浅层地温场分布特征,对影响浅层地温场的多种因素进行了系统研究。该区20~300 m深度内平均地温梯度为7.2℃/100 m,高于北京深部(基岩)地温梯度2.5~3.0℃/100m,大地热流值为66.35~84.14 mW/m2,较高的热流值显示岩石圈相对较薄且存在隐伏断裂。该区现今浅层地温场与深部地温场联系密切,形态分布与平原区重要隐伏活动断裂走向基本一致,主要受新构造运动控制,地下水、岩土体岩性及结构是浅层地温场分布的重要影响因素。  相似文献   

4.
淮北煤田的高温热害问题愈发突出,但目前对该区系统的地温场特征及大地热流分布研究非常稀少.在系统分析淮北煤田大量地面钻孔井温测井数据和井下巷道围岩温度测试数据的基础上,结合72块岩石样品的热导率测试结果,全面阐述了该区现今地温梯度和大地热流的分布特征.研究表明:淮北煤田现今地温梯度众值介于1.80~2.80 ℃/100 m之间,平均地温梯度为2.42 ℃/100 m;大地热流值变化范围为39.52~74.12 mW/m2,平均热流值为55.72 mW/m2,地温梯度和热流值均低于同处华北板块的其他盆地以及南部的淮南煤田;大地热流受地温梯度控制明显,两者分布较为相似,整体表现为南高北低、西高东低的特点.结果表明,区内现今地温场和热流分布主要受区域地质背景和区内构造格局的控制.   相似文献   

5.
潘树仁  丁致中 《江苏地质》2001,25(4):228-233
阐述了苏南地区地热资源形成的地层、构造、水文地质条件,研究了其地球物理、地热显示、恒温带、地温梯度、大地热流值、岩石热导率 、热水化学及热水分区等特征。  相似文献   

6.
鲁东地热区在地质构造单元上位于沂沭断裂带昌邑—大店断裂以东,地热资源丰富。本文采集了鲁东地热区招远地热田内一眼2000 m深地热井(DRZK01)中的40块岩芯样品进行岩石热导率、岩石生热率测试及分析,结合测温资料及收集资料对该区地热通量构成及分层热流进行了分析研究;采集区内典型地热流体样品进行水化学分析并采用合适的地热温标估算了该区热储温度;综合研究成果建立了该区地热成因概念模型。研究结果显示,该区岩石热导率数值较高,测量值在2.8~5.7 W/(m·K)之间,普遍高于上地壳平均热导率,地温梯度较高,为31.8℃/km;利用热导率和地温梯度计算的地热通量102 mW/m~2中热传导分量为(73.2±6.18) mW/m~2,对流分量为(28.76±6.18)mW/m~2,其中热传导分量中地壳热流为22.5 mW/m~2,地幔热流为(50.74±6.18) mW/m~2,二者比值为1∶1.98~1∶2.52,为"热幔冷壳"型热结构。石英温标计算热储平均温度为128.6℃,热循环深度约3634 m。研究结果丰富了该区地热系统理论并为该区地热资源开发利用提供一定的理论支撑。  相似文献   

7.
钟振楠  康凤新  宋明忠  郎旭娟  柳禄湧  傅朋远  李志杰 《地质论评》2021,67(2):67030007-67030007
鲁东地热区在地质构造单元上位于沂沭断裂带昌邑—大店断裂以东,地热资源丰富。本文采集了鲁东地热区招远地热田内一眼2000m深地热井(DRZK01)中的40块岩芯样品进行岩石热导率、岩石生热率测试及分析,结合测温资料及收集资料对该区地热通量构成及分层热流进行了分析研究;采集区内典型地热流体样品进行水化学分析并采用合适的地热温标估算了该区热储温度;综合研究成果建立了该区地热成因概念模型。研究结果显示,该区岩石热导率数值较高,测量值在2.8~5.7W/(m·K)之间,普遍高于上地壳平均热导率,地温梯度较高,为31.8℃/km;利用热导率和地温梯度计算的地热通量102mW/m2中热传导分量为(73.2±6.18)mW/m2,对流分量为(28.76±6.18)mW/m2,其中热传导分量中地壳热流为22.5mW/m2,地幔热流为(50.74±6.18)mW/m2,二者比值为1:1.98~1:2.52,为“热幔冷壳”型热结构。石英温标计算热储平均温度为128.6℃,热循环深度约3634m。研究结果丰富了该区地热系统理论并为该区地热资源开发利用提供一定的理论支撑。  相似文献   

8.
本文在大量钻孔测温资料的基础上,系统分析了河南省城市浅层地温场分布特征,分析了不同地貌类型城市恒温带特征。全区地下水恒温带深度平均深度24.8m,温度一般15.5℃~17.5℃;冲积平原区松散层恒温带深度最浅、温度最高,内陆河谷盆地区松散层恒温带深度最深、温度最低。近山前地带基岩浅埋区,地温梯度低;沿深大断裂带和构造隆(凸)起区,地温梯度高;济源—商丘断裂的新乡—延津段、内黄凸起和通许凸起地温梯度高。通过分析地温增温率特征和地温恢复能力,得出颗粒越粗地温恢复能力K值较大,富水性越强、水力坡度越大K值越大。对影响浅层地温场的多种因素的系统研究表明,该区浅层地温场受城市、人类活动、地下水流场、地下水埋深、构造、地下水补给、排泄等因素影响明显。  相似文献   

9.
江西省芦溪县南部地区地热资源丰富, 但地热地质研究程度较低, 大地热流测量工作进行的较少, 制约着区域地热资源勘查开发。本文以芦溪县南部的新泉和石溪为研究区, 结合钻孔岩心热物性测试和地温测井等分析了研究区岩石热导率、地温场、热源机制的特征。研究区岩石热导率平均值为 2.063~6.176 W/(m·K), 热导率最高的为硅质石英岩, 可作为良好的导热岩体。大地热流平均值为 76.39 mW/m2, 远高于中国大陆地区的平均值62.5 mW/m2, 该地区具有较高的热背景值。花岗岩放射性生热率平均值为2.16 μW/m3, 不属于高产热型岩体, 放射性生热对地表热流贡献较小, 热源来源为地壳深部供热。研究区构造活动强烈, 深大断裂和次级断裂发育, 为地下热水的深部循环提供了良好的导热和导水通道。本研究可为武功山地区的地热资源开发提供重要启示。  相似文献   

10.
大地热流是揭示一个地区的温度空间展布、地热资源形成和赋存条件的综合性评价指标。川东地区大地热流的研究十分薄弱, 制约着对该地区地热资源潜力及展布的认识。本文首先利用4口钻井178个系统稳态测温数据和25口钻井76个试油温度数据, 计算得到了川东地区的地温梯度和大地热流, 再利用一维稳态热传导方程计算得到川东地区下二叠统栖霞—茅口组热储的地温, 最后明确栖霞—茅口组发育的地热资源类型及潜力。结果表明: 川东地区地温梯度在16.0~21.3 °C/km之间, 平均为(18.3±1.59) °C/km; 大地热流值在44.3~67.7 mW/m2之间, 平均为(55.5±6.0) mW/m2, 具有构造稳定区的低温型地温场特征。栖霞—茅口组是川东地区最重要的热储, 主要发育中-低温型地热资源, 其中, 低温型地热资源主要发育在西南构造分区; 中温型地热资源主要发育在东南构造分区、东北构造分区及西北构造分区。结合热储特征, 可以得出川东地区栖霞—茅口组具有形成丰富地热资源的热储和地温条件。该成果可为川东地区的地热资源勘探评价提供重要的地热信息。  相似文献   

11.
本文以渭河盆地地温场为研究对象,在收集补充新地热井资料及分析测试样品的基础上,通过盆地深部结构、构造特征、地温场特征、热储层特征、地热资源量等分析,建立了盆地不同岩性岩石热导率与深度关系图版,确定了盆地地温场变化规律及地热田控制因素,提出了渭河盆地地热田形成模式。评价了盆地地热资源有利区,为盆地后续的开发利用提供了理论支持。研究认为渭河盆地热地温梯度分布在2.34~5.85℃/100m之间,平均地温梯度为3.50℃/100m,代表性大地热流68.33mw/m~2,地温梯度及不同深度地层温度具有东高西低、南高北低的特点。热导率总体上具有随深度的增加,逐渐增大的规律,热导率随深度增加主要受压实程度增强控制。相同深度条件下泥岩热导率最低,砂岩热导率居中、白云岩热导率最高。渭河盆地主要为层状地热田,盆地内地热通过热传导及热对流两种方式进行传递,以热传导为主。渭河盆地地热资源丰富,热储层可分为三种类型:①新生界砂岩孔隙型;②下古生界碳酸盐岩岩溶型;③断裂型。渭河盆地地热资源有利区主要分布于西安凹陷、固市凹陷。盆地地温场及地热田分布与莫霍面、软流圈上隆、岩石圈厚度减薄的深部背景密切相关,主要受地热传导和深大断裂热对流控制,是岩石圈深部结构、盆地构造、基底岩性、储盖组合等多因素共同作用下形成的。最后结合当前渭河盆地地热资源开发利用现状及存在问题,提出了地热开发利用建议。  相似文献   

12.
雄安新区地热资源丰富,本文通过对地热井资料的收集分析,并对单井地温梯度值进行计算,结合区域资料,编制本区盖层地温梯度等值线图,并分析了地温梯度值纵横向变化规律及影响因素。本区地温梯度值基本上都在3.0℃/100m以上,局部达到6.0℃/100m;平面上,地温梯度值总体特征是北高南低、中间高两侧低的特点;纵向上,盖层地温梯度值高,热储层内部地温梯度值低;其地温场的变化主要受地质构造、地层岩性、盖层、水文地质条件等因素控制,其中由于地质构造的影响,加上岩石热导率之间的差异,造成来自地幔的热量向上传递过程中重新分配,向背斜核部集中,导致盖层局部地温梯度值高。  相似文献   

13.
大地热流值是表征地球热状态的重要参数,也是进行深部地温预测和评价一个地区地热资源的最基本数据。受钻孔测温的影响,盆地外的无钻孔测温地区缺少实测的大地热流值。目前的热流分布图都是依据相邻盆地的实测值进行插值绘制的,无钻孔区热流值可信度较低。由于岩石居里点与温度密切相关,可以通过居里面深度来研究地表热流值。本文依据东北地区现有的居里面深度分布图,结合实测的岩石热导率、岩石生热率数据和相应的地壳分层状况,计算了东北地区的大地热流值,重新绘制了中国东北地区精细的大地热流分布图。东北地区整体大地热流处于42.5~95 mW/m 2 之间,热流高值位于五大连池及敦化 密山断裂带海龙—牡丹江一带,松辽盆地内部、小兴安岭和长春 延吉缝合带也有局部的高热流值。热流高值与居里面隆起区域有较高的一致性,即居里面隆起处热流较高,而坳陷区热流较低。本次研究填补了中国东部地区热流实测值空白,为该区深部地温预测和地热资源评价提供了更加准确的参数。  相似文献   

14.
区域地热特征及深部温度估算对于油气勘探和地热能资源评价和开发利用具有重要意义,长江下游地区是我国东部经济社会高度发达的地区,其能源需求大,区域热状态研究能为该区地热资源评价提供关键约束。通过整合长江下游地区已有的温度数据和实测岩石物性参数,勾勒出该区的现今地温场特征,并进一步估算其1 000~5 000 m埋深处的地层温度。研究表明,长江下游地区现今地温梯度为16~41 ℃/km,且以18~25 ℃/km居多,苏北盆地区呈现高地温梯度。大地热流值为48~80 mW/m2,其均值为60 mW/m2,表现为中等的地热状态,有利于油气和地热能形成。此外,长江下游地区深部地温估算表明,1 000 m埋深处的温度范围为30~54 ℃,2 000 m时温度范围为50~95 ℃,3 000 m时温度范围为65~130 ℃,4 000 m时温度范围为80~170 ℃,5 000 m时温度范围为100~210 ℃。区域深部地温的展布趋势呈NE向,高温区域集中在安徽南部和江苏东北部。结合60 ℃和120 ℃等温线的埋深分布及区域地质、地球化学和地热特征,初步探讨了该区油气与地热资源的有利区带及其相应的开发利用类型。  相似文献   

15.
古潜山地热资源具备岩溶孔隙发育程度高、热储面积厚度大、地热水储量大的优点。冀中坳陷内古潜山分布密集且地热资源丰富, 河间潜山位于冀中坳陷饶阳凹陷中东部, 具有良好的地热地质条件, 开发潜力巨大。本文基于河间潜山及其周缘地区测井资料、岩石热物性并进行了计算, 发现其地温梯度为29.8 ℃/km到44.5 ℃/km之间, 平均值为40.7 ℃/km。大地热流值介于64.8~80.6 mW/m2之间, 平均值为 73.4 mW/m2。通过水热耦合模拟方法模拟选定的地热资源有利区的温度变化, 结果发现河间潜山合理的开采井距为800 m, 合理开采量为60 L/s, 回灌温度为35 ℃, 总可开采量为6.32×1016 J, 单年可开采量为 6.32×1014 J, 可供暖面积为1.22×106 m2, 对于冀中坳陷潜山地热资源的开发利用具有一定的指导意义。  相似文献   

16.
含油气盆地的地温场在油气的生成、运聚及盆地演化过程中起着十分重要的作用。柴达木盆地是中国西部重要的含油气盆地,位于喜马拉雅构造域的东北部,盆地现今地温场特征研究不仅为柴达木盆地及周缘陆内或板内大陆动力学及盆地动力学研究提供了科学依据,同时也是油气成烃、成藏及资源评价等工作的研究基础。柴达木盆地现今地温场研究的前期工作主要集中在盆地西部,盆地的北缘、东部开展的工作很少,所用研究数据多取自20世纪之前,盆地现今地温场特征的系统研究尚比较缺乏,亟须开展相关研究工作。文中采用先进的钻孔温度连续采集系统,实现了深井稳态测温工作的大规模化、高精度化,使用光学扫描法测试岩石热导率,获得了批量的、高精度的岩石热导率数据,新增了17口钻井的测温剖面。研究表明:柴达木盆地现今地温梯度平均为(28.6±4.6) ℃/km,地温梯度分布具有西部高,中、东部低的特点。柴达木盆地现今大地热流值平均(55.1±7.9) mW/m2,盆地不同构造单元大地热流分布存在差异。大地热流分布特征表明:柴达木盆地总体属于温盆,热流值低于我国大陆地区大地热流平均值,但高于西部的塔里木、准噶尔盆地。柴达木盆地现今地温场分布特征受地壳深部结构、岩石热导率性质及盆地构造等因素的控制。  相似文献   

17.
黄少英  胡芳杰  张科  田浩男  赵青 《地质学报》2022,96(11):3955-3966
塔里木盆地中央隆起是我国的大型油气聚集带。本文借助9口钻井的系统测温数据和86口钻井的试油温度数据,系统研究了该区的0~6000 m地温梯度、大地热流、超深层温度(6000~8000 m和奥陶系—寒武〖JP2〗系烃源岩底界面)分布特征。中央隆起区0~6000 m现今地温梯度介于14. 1~27. 8 ℃/km,平均值为20. 6 ℃/km;〖JP〗大地热流介于34. 4~60. 6 mW/m2,平均值为46. 7 mW/m2;6000 m埋深处温度介于98. 1~180. 2℃,平均值为137. 4℃;7000 m埋深处温度介于107. 4~198. 9℃,平均值为150. 0℃;8000 m埋深处温度介于117. 4~217. 5℃,平均值为162℃,受基底起伏、岩石热物性和构造作用等影响,整体上均具有由西北向东南逐渐增大的趋势。奥陶系—寒武系烃源岩底界面温度介于81. 6~228. 2℃和91. 0~248. 6℃,受到埋藏深度的影响,表现出巴楚凸起温度最低,塔中凸起温度次之,古城低凸起温度最高的特征,一定程度上影响油气的性质和保存。本研究不仅明确了中央隆起超深层温度场分布特征,而且为今后超深层油气勘探提供重要依据。  相似文献   

18.
松辽盆地不仅是世界上已发现油气资源最为丰富的陆相沉积盆地之一,同时也存在十分丰富的中低温地热资源,是当前油气勘探和地热勘探的主力区块。本文结合近10年来新增的一大批测温数据,借助571口钻井地层测温资料和150余个岩石热物性参数,重新剖析了松辽盆地现今地温场分布特征及其主控因素。研究表明,松辽盆地地温梯度在19~55 ℃/km之间,平均为41. 4 ℃/km,现今大地热流分布在38. 9~111. 2 mW/m 2之间,平均为78. 9 mW/m2。相比其他盆地而言,松辽盆地具有高温“热盆”的特点。平面上,盆地中央坳陷区地温梯度和大地热流均较高。嫩江组底界面温度约为15~88℃,平均为48. 6℃;姚家组底界面的温度为18~95℃,平均值为53℃;青山口组底界面的温度为25~128℃,平均值为64℃;泉四段底界面的温度为26~131℃,平均值为67℃。松辽盆地现今温度分布主要受到成盆演化动力学背景、岩石热物性特征、岩浆作用等多种因素的影响。松辽盆地经历了强烈的区域伸展作用和岩石圈减薄,并发育丰富的基底断裂和地壳断裂,造成深部地幔热物质沿着基底断裂运移至浅部,因此地表热流偏高。  相似文献   

19.
通过对合肥市15个地温监测孔的长期观测,分析了该市浅层地温场的分布特征及其影响因素。研究结果表明:合肥市浅层地温场整体呈西低东高分布特征,区内恒温带平均温度在17.4℃左右,恒温带深度在12~32m左右,地温梯度在2.3~4.1℃之间。浅层地温场主要受地质构造控制,同时受地层岩性及地下水补径排条件影响。200m以浅岩性以泥岩、砂岩为主,胶结程度差,结构松散,且地下水贫乏,浅层地温能的开发利用适宜采用地埋管型地源热泵。  相似文献   

20.
吐鲁番-哈密盆地现今地温与油气关系研究   总被引:11,自引:3,他引:8       下载免费PDF全文
通过大量的地层测温资料综合分析确定了吐鲁番-哈密盆地不同构造单元的现今地温梯度及大地热流值,该盆地(以下简称吐哈盆地)现今地温梯度为2.50℃/100m,大地热流值为47.8mW/m2,现今地温梯度及大地热流值分布具有东高西低的特点.吐哈盆地现今地温梯度及大地热流值高于塔里木盆地及准噶尔盆地,现今地温场受地壳厚度、基底结构及盆地构造的控制.吐哈盆地现今地温对烃源岩的油气生成有重要控制作用,台北凹陷属持续埋藏增温型凹陷,烃源岩现今仍处于成油高峰期.哈密坳陷、托克逊凹陷部分地区烃源岩古地温高于今地温,对烃源岩生油过程起控制作用的是古地温而不是现今地温.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号