首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lepping  R.P.  Berdichevsky  D.B.  Szabo  A.  Arqueros  C.  Lazarus  A.J. 《Solar physics》2003,212(2):425-444
Using WIND magnetic field (MFI) and plasma (SWE) data, an `average' profile of an interplanetary magnetic cloud was developed in terms of five physical (scalar) quantities based on appropriately selected individual clouds. The period of study was from early 1995 to late in 1998, primarily during the quiet part of a solar cycle. The physical quantities are: magnetic field magnitude, proton density, solar wind bulk speed, proton thermal speed, and proton plasma beta. Selection of the clouds was based on two considerations: (1) their `quality', determined objectively from the application of a static magnetic field model of cloud field structure, had to be good, and (2) distant spacecraft approaches from the cloud axes were not accepted. Nineteen clouds resulted out of 35 original cases. A superposed epoch analysis was performed on the 5 parameters generating summary profiles of a generic magnetic cloud at 1 AU. The density within the generic magnetic cloud reached a distinct minimum near the center and peaked in the trailing part (closest to Sun) after a slow rise. The individual clouds fall into two classes, those that have such an enhanced density feature (about of them) and those that have an overall nearly flat density profile. For the first 85% of the generic magnetic cloud the bulk speed decreased almost uniformly by 45 km s–1 indicating marked expansion over 1 AU. The field intensity peaked very near the cloud's center but was noticeably asymmetric. Proton thermal speed was quite symmetric with local maxima at the front, center, and rear. Proton plasma beta was low throughout the cloud (0.12 on average), but had a broad minimum at its center. The relative degree of fluctuation level for the parameters ranged from the most quiet for both speed and field magnitude, to the most `noisy' for proton plasma beta, with fluctuations in density and thermal speed at intermediate levels, all being below 0.2, based on a sample-scale of frac1100 of the cloud duration. These profiles may be useful in constraining future structural and thermodynamic models of clouds with regard to their solar birth conditions and interplanetary evolution.  相似文献   

2.
Magnetic clouds were observed in the solar wind between 2–4 AU by Voyagers 1 and 2, indicating that they are stable enough to persist without major changes out to such distances. The average size in radial extent of the clouds observed at these distances was 0.47 AU, compared to 0.25 for clouds observed at 1 AU. Assuming that these numbers are representative, we estimate that the clouds were expanding at a speed of the order of 45 km s-1. This is consistent with the expansion speed derived from the difference of the speeds of the front and rear boundaries of the clouds, 33 km s-1. The average Alfvén speed at the front and rear boundaries was 104 km s-1, so our estimated expansion speed is nearly half of the Alfvén speed, consistent with an earlier estimate of the expansion speed of clouds between the Sun and 1 AU. The magnetic field configuration cannot be determined uniquely, but it is highly ordered and consistent with the passage of some kind of loop. The simple model of a magnetic tongue with magnetic field lines in planes, e.g., meridian planes, is not consistent with the data.  相似文献   

3.
Dynamics of molecular clouds on the galactic scale   总被引:1,自引:0,他引:1  
We have carried out an extensive investigation into the dynamics of the molecular clouds in the disk of the Galaxy. We have used both computational methods and physical arguments to try to understand how the ensemble of molecular clouds interacts, how the clouds are affected by the gravitational field of the Galaxy and also the circumstances under which they can aggregate into giant molecular clouds (GMC's).The dynamical model is three dimensional and consists of 120,000 spherical clouds, each having a mass of 104 M . It allows for the mutual gravitation between clouds, up to a cut-off distance; when two clouds collide they rebound, with a specified coefficient of restitutione. We have also developed a physically more realistic model for a cloud, supported by a magnetic field, and used it to select a suitable range of values fore. Our first paper deals with the case of an axially symmetrical galaxy. The clouds are distributed initially in a disk extending 100 pc on either side of the Galactic plane. As it evolves the system of clouds loses energy, and the disk grows thinner at a rate which depends on the value ofe. GMC's start to form once the disk is thin enough. We believe this result to be valid more generally, and that it holds also in models with spiral structure.  相似文献   

4.
This paper deals with molecular clouds discovered in the absorption spectra (z=2–3) of distant quasars. It is argued that these clouds belong to the gaseous subsystems of young galaxies. We estimate the gas concentration to ben<104 cm–3 in the cloud observed in the direction of the quasar PHL957. It is shown that this cloud is exposed to ultraviolet radiation. The UV-energy flux does not exceed the value typical for our Galaxy by an order of magnitude (F2×10–6 ergs cm–2 s–1 Å–1 at =2000 Å). The mechanisms maintaining the thermal balance in this cloud are discussed.  相似文献   

5.
We have studied the behavior of the inner motions of OH, H2CO, and CO molecular clouds. This study shows the existence of two main components of these clouds: the narrow one, associated to dense small clouds and a wide one representing the large diffuse clouds seen in neutral hydrogen, the large clouds are the vortex and intermediate state between turbulent and hydrodynamic motions in the Galaxy.For the dense clouds with sizesd<10 pc we have found a relationship d 0.38 consistent with the Kolmogorov law of turbulence; the densities and sizes of these clouds behave asnd –1. This last relation for these molecular clouds is compared with theHII one. Also, we discuss the effects of the inner magnetic field in these clouds.  相似文献   

6.
The magnetic fields observed in the galactic disc are generated by the differential rotation and the helical turbulent motions of interstellar gas. On the scalesl=2k –1 which lie in the intervall 0<l<l e (l 0100 pc is the energy-range scale of the galactic turbulence), the spectral density of the kinetic energy of turbulence (k –5/3) exceeds the magnetic energy spectral density (k –1). The equipartition between magnetic and kinetic energies is reached atl=l e 6 pc in the intercloud medium and is maintained down to the scalel=l d 0.03 pc. In dense interstellar cloudsl e is determined by the individual cloud size andl d 0.1 pc.The internal turbulent velocities in Hi clouds (cloud size is assumed to be 10 pc) lie in the range from 1.8 to 5.6km s–1, fitting well within the observed range of internal rms velocities. Dissipation of the interstellar MHD turbulence leads to creation of temperature fluctuations with amplitudes of 150 K and 65 K in dense clouds and intercloud medium, respectively. The small-scale fluctuations observed in the interstellar medium may arise from such perturbations due to the thermal instability, for instance. Dissipation of the MHD turbulence energy provides nearly half of the energy supply needed to maintain the thermal balance of the interstellar medium.  相似文献   

7.
Grains ejected from stars at velocities of 107 cm s–1 and/or grains accelerated by the pressure of starlight in the intercloud medium to velocities in the range 2×106–107 cm s–1 are slowed to velocities of about 2×105 cm s–1 in a typical interstellar cloud. The interaction of fast grains with gas atoms as they are slowed in clouds could provide (a) the dominant heat source for interstellar clouds; (b) sites for molecule formation; and (c) a mechanism of providing a pressure balance between clouds and the intercloud medium.Paper presented at the Symposium on Solid State Astrophysics, held at the University College, Cardiff, Wales, between 9–12 July, 1974.  相似文献   

8.
The solar wind quasi-invariant (QI) has been defined by Osherovich, Fainberg, and Stone (Geophys. Res. Lett. 26, 2597, 1999) as the ratio of magnetic energy density and the energy density of the solar wind flow. In the regular solar wind QI is a rather small number, since the energy of the flow is almost two orders of magnitude greater than the magnetic energy. However, in magnetic clouds, QI is the order of unity (less than 1) and thus magnetic clouds can be viewed as a great anomaly in comparison with its value in the background solar wind. We study the duration, extent, and amplitude of this anomaly for two groups of isolated magnetic clouds: slow clouds (360<v<450 km s−1) and fast clouds (450≤v<720 km s−1). By applying the technique of superposition of epochs to 12 slow and 12 fast clouds from the catalog of Richardson and Cane (Solar Phys. 264, 189, 2010), we create an average slow cloud and an average fast cloud observed at 1 AU. From our analysis of these average clouds, we obtain cloud boundaries in both time and space as well as differences in QI amplitude and other parameters characterizing the solar wind state. Interplanetary magnetic clouds are known to cause major magnetic storms at the Earth, especially those clouds which travel from the sun to the Earth at high speeds. Characterizing each magnetic cloud by its QI value and extent may help in understanding the role of those disturbances in producing geomagnetic activity.  相似文献   

9.
Some locally rotationally symmetric (LRS) Bianchi type I cosmological models for a cloud string with bulk viscosity and magnetic field are presented. Where an equation of state ρ = kλ and a relation between metric potential R = AS n are considered. The solution describes a shearing and nonrotating model with a big bang start. In the absence of magnetic field it reduces to a string model with bulk viscosity, where the relation between the coefficient of bulk viscosity and energy density is ζ ∝ ρ1/2. After choosing k = , it further reduces to a string model without viscosity and magnetic field. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
A consistent account of plasma turbulence in magnetohydrodynamics equations describing transport processes across the magnetic field is presented. The structure of the perpendicular shock wave generated in the solar atmosphere, as a result of either local disturbance of the magnetic field or dense plasma cloud motion with a frozen-in magnetic field, has been investigated. The region of parameters in the solar atmosphere at which the electron-ion relative drift velocity u exceeds the electron thermal velocity V eand generation of radio emission becomes possible, has been determined. The plasma turbulence inside the front has been shown, under conditions of solar corona, not to cause the oscillation structure of shock front to break down. Under chromospheric conditions, the shock profile is aperiodical. Then, the condition u > Vecan be satisfied and shock waves having an Alfvén Mach number M which exceeds the critical value M c 3.3 for aperiodical shock waves can exist (Eselevich et al., 1971a). Arguments are given in favour of the fact that perpendicular shock waves are generated in the Sun's atmosphere when dense plasma clouds, with a frozen-in magnetic field, are expanded.  相似文献   

11.
Based on the observations of the Sun and the interplanetary medium, a series of solar activities in late October 2003 and their consequences are studied comprehensively. Thirteen X-ray flares with importance greater than M-class, six frontside halo coronal mass ejections (CMEs) with span angle larger than 100 and three associated eruptions of filament materials are identified by examining lots of solar observations from October 26 to 29. All these flares were associated with type III radio bursts, all the frontside halo CMEs were accompanied by type II or type II-like radio bursts. Particularly, among these activities, two major solar events caused two extraordinary enhancements (exceeding 1000 particles/(cm2s–1sterMev–1) of solar energetic particle (SEP) flux intensity near the Earth, two large ejecta with fast shocks preceding, and two great geomagnetic storms with Dst peak value of –363 and –401 nT, respectively. By using a cross correlation technique and a force-free cylindrical flux rope model, the October 29 magnetic cloud associated with the largest CME are analyzed, including its orientation and the sign of its helicity. It is found that the helicity of the cloud is negative, contrary to the regular statistical pattern that negative- and positive-helical interplanetary magnetic clouds would be expected to come from northern and southern solar hemisphere. Moreover, the relationship between the orientation of magnetic cloud and associated filament is discussed. In addition, some discussion concerning multiple-magnetic-cloud structures and SEP events is also given.  相似文献   

12.
In this paper, we analyze the interplanetary causes of eight great geomagnetic storms during the solar maximum (2000-2001). The result shows that the interplanetary causes were the intense southward magnetic field and the notable characteristic among the causal mechanism is compression. Six of eight great geomagnetic storms were associated with the compression of southward magnetic field, which can be classified into (1) the compression between ICMEs (2) the compression between ICMEs and interplanetary medium. It suggests that the compressed magnetic field would be more geoeffective. At the same time, we also find that half of all great storms were related to successive halo CMEs, most of which originated from the same active region. The interactions between successive halo CMEs usually can lead to greater geoeffectiveness by enhancing their southward field Bs interval either in the sheath region of the ejecta or within magnetic clouds (MCs). The types of them included: the compression between the fast speed transient flow and the slow speed background flow, the multiple MCs, besides shock compression. Further, the linear fit of the Dst versus gives the weights of and Δt as α=2.51 and β=0.75, respectively. This may suggest that the compression mechanism, with associated intense Bs, rather than duration, is the main factor in causing a great geomagnetic storm.  相似文献   

13.
Lepping  R.P.  Berdichevsky  D.B.  Burlaga  L.F.  Lazarus  A.J.  Kasper  J.  Desch  M.D.  Wu  C.-C.  Reames  D.V.  Singer  H.J.  Smith  C.W.  Ackerson  K.L. 《Solar physics》2001,204(1-2):285-303
The energetic charged particle, interplanetary magnetic field, and plasma characteristics of the `Bastille Day' shock and ejecta/magnetic cloud events at 1 AU occurring over the days 14–16 July 2000 are described. Profiles of MeV (WIND/LEMT) energetic ions help to organize the overall sequence of events from the solar source to 1 AU. Stressed are analyses of an outstanding magnetic cloud (MC2) starting late on 15 July and its upstream shock about 4 hours earlier in WIND magnetic field and plasma data. Also analyzed is a less certain, but likely, magnetic cloud (MC1) occurring early on 15 July; this was separated from MC2 by its upstream shock and many heliospheric current sheet (HCS) crossings. Other HCS crossings occurred throughout the 3-day period. Overall this dramatic series of interplanetary events caused a large multi-phase magnetic storm with min Dst lower than −300 nT. The very fast solar wind speed (≥ 1100 km s−1) in and around the front of MC2 (for near average densities) was responsible for a very high solar wind ram pressure driving in the front of the magnetosphere to geocentric distances estimated to be as low as ≈ 5 R E, much lower than the geosynchronous orbit radius. This was consistent with magnetic field observations from two GOES satellites which indicated they were in the magnetosheath for extended times. A static force-free field model is used to fit the two magnetic cloud profiles providing estimates of the clouds' physical and geometrical properties. MC2 was much larger than MC1, but their axes were nearly antiparallel, and their magnetic fields had the same left-handed helicity. MC2's axis and its upstream shock normal were very close to being perpendicular to each other, as might be expected if the cloud were driving the shock at the time of observation. The estimated axial magnetic flux carried by MC2 was 52×1020 Mx, which is about 5 times the typical magnetic flux estimated for other magnetic clouds in the WIND data over its first 4 years and is 17 times the flux of MC1. This large flux is due to both the strong axially-directed field of MC2 (46.8 nT on the axis) and the large radius (R 0=0.189 AU) of the flux tube. MC2's average speed is consistent with the expected transit time from a halo-CME to which it is apparently related.  相似文献   

14.
We compare recent observations of a solar eruptive prominence as seen in extreme-UV light on 30 March 2010 by the Solar Dynamics Observatory (SDO) with the multi-tube model for interplanetary magnetic clouds (Osherovich, Fainberg, Stone, Geophys. Res. Lett. 26, 2597, 1999). Our model is based on an exact analytical solution of the plasma equilibrium with magnetic force balanced by a gradient of scalar gas pressure. Topologically, this solution describes two magnetic helices with opposite magnetic polarity embedded in a cylindrical magnetic flux tube that creates magnetic flux inequality between the two helices by enhancing one helix and suppressing the other. The magnetic field in this model is continuous everywhere and has a finite magnetic energy per unit length of the tube. These configurations have been introduced as MHD bounded states (Osherovich, Soln. Dannye 5, 70, 1975). Apparently, the SDO observations depict two non-equal magnetically interacting helices described by this analytical model. We consider magnetic and thermodynamic signatures of multiple magnetic flux ropes inside the same magnetic cloud, using in situ observations. The ratio of magnetic energy density to bulk speed solar wind energy density has been defined as a solar wind quasi-invariant (QI). We analyze the structure of the QI profile to probe the topology of the internal structure of magnetic clouds. From the superposition of 12 magnetically isolated clouds observed by Ulysses, we have found that the corresponding QI is consistent with our double helix model.  相似文献   

15.
Self-consistent multicomponent models of evolution of the interstellar medium have been computed by extending the scheme of Habeet al. (1981) and adding some processes of star formation in molecular clouds, induced by supersonic collisions. A monochromatic spectrum of the molecular clouds has been adopted with a cloud mass of 104 M . The consequences of these simplifying assumptions have been discussed and moreover the influence of several parameters (efficiency of star formation, photoionization rate, cloud radius, and mass) and of the initial conditions has been analyzed. Emphasis has been put on the following points: (1) there is a strong conditioning of the physical state of the intercloud gas on the star formation rate; (2) depending on the total initial mass of the molecular clouds per unit volume , two different regimes of star formation are possible: one, when is larger than a critical value cr, dominated by collisions between clouds, with a total star formation rate practically constant and a long lifetime for the system, the other, characterized by <cr, in which the dominant process is due to the expansion ofHii regions: the resulting star formation rate causes the system exhaustion in a relatively short lifetime. Some suggestions are derived concerning the evolution of galaxies.  相似文献   

16.
As a result of the analysis of the observed interstellar 2800 Mgii absorption line data, an empirical relationship — a positive correlation — between the equivalent widthW(2800) and the effective temperature of the starT was discovered (Figure 1). However, in the case when this doublet is of stellar (photospheric) origin, only a negative correlation betweenW(2800) andT exists. Hence, the existence itself of such a positive correlation betweenW(2800) andT may be viewed as incomprehensible for the present influence of the star on the strength of the absorption line 2800 Mgii of nonstellar origin.On the other hand, we have evidence that the ionizing radiation of hot stars cannot provide for the observed very high degree of ionization of the interstellar magnesium. In particular, the observations give for interstellar magnesium the ratioN +/N 1 1000, while in the case of ionization under the action of stellar radiation only we haveN +/N 1 10.The assumption that circumstellar clouds surround hot stars can naturally explain these and other similar facts. A method for the determination of the general parameters-size, concentration, mass etc. — of the circumstellar clouds is developed. The main results of the application of this method to the relation of more than 20 hot stars are:(1) The circumstellar clouds surround almost (70%) all hot giants and subgiants. In the remaining (30%) cases, the absence of circumstellar envelopes requires additional evidence. (2) The linear sizes of circumstellar clouds vary within wide ranges — from 0.002 pc up to 1 pc. Most frequent are clouds with size of 0.1 pc. (3) The main concentration of hydrogen atoms (electrons) in circumstellar clouds is of the order of 100 cm–3; the minimum value is 20–30 cm–3, the maximum 104 cm–3. In one case (Deneb) the electron concentration rises up to 105 cm–3 for the size of the cloud 0.001 pc=3×1015 cm. (4) Stars of the same spectral and luminosity classes may possess circumstellar clouds characterized by quite different parameters. (5) Hydrogen in circumstellar clouds is completely ionized; for these clouds the optical depth c 1; on the average,T c 0.005. (6) The integrated brightness of circumstellar clouds is substantially fainter (by 8–10m) than that of the central star. This is the reason why these clouds cannot be detected by ground-based observations. (7) The masses of individual circumstellar clouds vary from 1 down to 10–4 . This gives for the mass ejection rate from 10–10 to 10–6 per year in case if these clouds are formed by the braking and accumulation of the ejected mass.The method of 2800 Mgii seems very convenient, fruitful and promising for the detection and study of circumstellar envelopes. Also, this method is very sensitive for a determination of the general parameters of such clouds, and concerns practically all their geometric, physical, kinematic and other properties.  相似文献   

17.
In this paper we estimate the star formation efficiency using the assumption that star formation continues until the radiation pressure disrupts the cloud. The results that in the case of low/mediummass star formation the efficiency could be about five times higher than in the case of high-mass star formation.For a three-component star-forming system (low/medium-mass stars, high-mass stars, gas) we investigate the temporal behaviour and the final star formation efficiency. We can show that the efficiency in 104 M clouds is higher than in 106 M clouds. This supports our view that bound stellar systems form from medium-mass clouds, whereas OB associations form in the cores of giant molecular clouds. Furthermore, the effect of induced high-mass star formation may cause a change of the mass spectrum during the formation of an OB association.Paper presented at a Workshop on The Role of Dust in Dense Regions of Interstellar Matter, held at Georgenthal, G.D.R., in March 1986.  相似文献   

18.
The problems of fragmentation, angular momentum, and magnetic flux during star formation are reviewed briefly. Then the resolution of the angular momentum problem through magnetic braking is studied rigorously.A disk-like interstellar cloud of uniform density cl is given an initial angular velocity o about its axis of symmetry, which isaligned with an initially uniform, frozen-in magnetic field. Torsional Alfvén waves transport angular momentum from the cloud to the external medium, which has a uniform density ext . The angular velocity of the cloud ( cl ) is determined analytically as a function of space and time for different ratios cl / ext (the only free parameter in the equations), representing different stages of contraction. Despite dissimilar transient response of the cloud (or fragment) structure to different initial conditions, the characteristic time for magnetic braking of the rotation of the cloud (or fragment) as a whole is remarkably insensitive to the initial conditions and independent of the stage of contraction. The latter conclusion is in agreement with an approximate result obtained recently (Mouschovias, 1978; 1979a).A cylindrical cloud (or fragment) of uniform density is also imparted an initial angular velocity about its axis of symmetry with respect to the external medium. The frozen-in magnetic field is now initially radial andperpendicular to the axis of symmetry. In this case magnetic braking becomes more efficient upon contraction. It is more efficient than the aligned rotator case typically by one order of magnitude. The angular momentum problem can be resolved in about 106 yr during the early stages of cloud contraction. Planetary systems, such as the Sun-Jupiter pair, become dynamically possible. A stage exists in which a cloud (or fragment) is in retrograde rotation with respect to its surroundings. This provides the first and only observable prediction of magnetic braking in action. It also constitutes a natural explantation of retrograde rotation in stellar and planetary systems.This work was supported in part by the National Science Foundation under grant NSF AST-77-23568.Paper presented at the European Workshop on Planetary Sciences, organised by the Laboratorio di Astrofisica Spaziale di Frascati, and held between April 23–27, 1979, at the Accademia Nazionale del Lincei in Rome, Italy.  相似文献   

19.
Bravo  S.  Aguilar  E.  Blanco-Cano  X.  Stewart  G.A. 《Solar physics》1999,188(1):163-168
Among all the signatures of solar ejecta in interplanetary space, magnetic clouds are particularly interesting. We have shown that they are associated with solar mass ejections that involve not only coronal heights, but also chromospheric heights and so, they are almost always associated with low-altitude solar activity such as H flares or filament eruptions. As a magnetic cloud is a very large structure, and not all the ejecta found in the interplanetary medium are clouds, it is interesting to investigate the characteristics of the large-scale coronal magnetic structures in the regions where the activity leading to a cloud takes place. In this paper we use Hoeksema's potential field model of the solar magnetosphere to obtain the magnetic structure of the site of the solar events associated with 35 interplanetary magnetic clouds. The position of the related solar activity was determined from the location of the near-surface solar explosive events (flares and filament eruptions) associated with each cloud, obtained in our previous study. We find that the solar activity associated with interplanetary magnetic clouds occurs in regions of low-altitude, magnetically closed structures lying between higher helmets, or between the highest helmets and coronal holes, where the magnetic field lines are longitudinally oriented.  相似文献   

20.
We show how, given observed equivalent widths of Mgii and Mgi absorptions due to an interstellar cloud in which a late-B star is embedded, the basic physical parameters: kinetic temperature, mean density, electron density, and radius can be constrained. Hydrogen ionization by means of cosmic rays and the effect of the stellar radiation field on the magnesium ionization equilibrium are taken into account.The method is applied to the reflection nebula surrounding the star HD 26676. The resulting solutions for the radius and temperature of the nebulosity are comparable to the typical values derived for diffuse interstellar clouds from optical and 21-cm measurements, if a cosmic-ray ionization rate 10–16s–1 — in agreement with recent determinations — is assumed. The results are not strongly dependent on the gas pressureP forP varying in a range of values typical of interstellar clouds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号