首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 359 毫秒
1.
针对利用重力场模型方法计算地球外空间扰动引力的精度时,模型截断误差是主要的影响因素这一问题,该文利用重力场模型阶方差分析地球外部空间扰动引力截断误差,并与用重力异常阶方差Rapp模型进行比较。实验结果表明:在低阶低空部分,Rapp模型与实际重力异常阶方差相差最大,达到17.125 3mGal;重力场模型计算扰动引力与计算点高度有着密切联系,截断误差的大小随着高度的增加迅速衰减;当计算高度为0.2km时,使用36阶的模型计算扰动引力,截断误差达到25.957 8mGal;当计算高度超过400km时,即使用36阶模型,截断误差也可以控制在1.5mGal内。  相似文献   

2.
利用最新的全球引力位模型-EGM2008对经典的重力异常阶方差模型进行了分析比较,分析表明,经典的阶方差模型由于限于当时的观测条件,已经不能准确地描述扰动场元在各个频段的频谱分布。在Moritz阶方差模型基础上,利用EGM2008位模型获得的2160阶阶方差重新构建了新的分段重力异常阶方差模型-TSD模型,该模型与EGM2008位模型计算的阶方差比较其标准差和均值分别为0.25mgal2 、0.0 。利用TSD模型计算了不同频段内大地水准面高、重力异常、扰动重力、垂线偏差四个重力场扰动场元的频谱特征,计算结果表明:扰动场元频谱分布较之传统分析结果有较大的变化,其中重力异常、扰动重力及垂线偏差在中、低频部分的能量有明显的增加而高频及甚高频部分的比重有明显的减少。  相似文献   

3.
利用轨道扰动引力谱和大地水准面累计误差谱分析的方法估计未来GRACE(gravity recovery and climateexperiment)Follow-On卫星反演地球重力场的空间分辨率。基于GRACE Follow-On卫星的轨道特性,计算其在高空所受到的径向扰动引力,并根据谱特性及星载加速度计的测量噪声水平分析该卫星能反演重力场的阶数。利用EGM96重力场模型分别计算200 km和250 km轨道高度处的扰动引力谱。分析其特性表明:在两个轨道高度处分别能反演281阶和242阶的地球重力场模型。给出大地水准面累计误差谱模型,并计算200 km和250 km轨道高度处大地水准面累计误差谱。分析其谱特性表明:在两个轨道高度处分别能反演至286阶和228阶的地球重力场模型。  相似文献   

4.
《测绘学报》2012,41(3)
利用轨道扰动引力谱和大地水准面累计误差谱分析的方法估计未来GRACE(gravity recovery and climate experimenl)Follow—On卫星反演地球重力场的空间分辨率。基于GRACEFollow—On卫星的轨道特性,计算其在高空所受到的径向扰动引力,并根据谱特性及星载加速度计的测量噪声水平分析该卫星能反演重力场的阶数。利用EGM96重力场模型分别计算200km和250km轨道高度处的扰动引力谱。分析其特性表明:在两个轨道高度处分别能反演281阶和242阶的地球重力场模型。给出大地水准面累计误差谱模型,并计算200km和250km轨道高度处大地水准面累计误差谱。分析其谱特性表明:在两个轨道高度处分别能反演至286阶和228阶的地球重力场模型。  相似文献   

5.
重力三层点质量模型的构造与分析   总被引:1,自引:0,他引:1  
点质量模型理论是研究区域重力场的一个非常重要的方法,本文简要介绍了点质量模型逼近区域重力场的原理,计算分析了构造点质量模型过程中系数矩阵元素的特性。以32~34N和103~105E为计算中心区域,利用EGM2008的720阶次的位系数计算出的重力异常作为观测数据,在36阶次位系数模型的基础上,构造了四层点质量组分频段从低到高来逼近该区域重力场。数值试验的结果表明:三层点质量模型效果较好,点质量模型计算的扰动重力在径向上的截断误差优于2 .  相似文献   

6.
高分辨率格网空间重力异常的精密确定   总被引:2,自引:0,他引:2  
介绍高分辨率格网空间重力异常精密确定的方法,并利用深圳及周边地区5 213个高精度实测重力值、高分辨率数字地形模型和WDM94地球重力场模型,采用移去-恢复技术和加权平均法计算深圳市1 km和2 km分辨率的格网空间重力异常.计算结果表明:该地区1 km和2 km分辨率的格网空间重力异常的精度分别为±1.560 mGal和±4.442 mGal.1 km分辨率的格网空间重力异常成果已应用于该地区似大地水准面的精化,产生了较大的经济效益和社会效益.  相似文献   

7.
重力场对弹道导弹自由段落点影响的仿真分析   总被引:1,自引:1,他引:0  
利用EGM96地球重力场模型,采用数值积分方法分析了重力场J2项、J4项以及扰动重力对弹道导弹自由段落点偏差的影响,讨论了积分步长的选取和重力场模型阶数的选取。仿真计算结果表明,对6000km左右自由段射程的弹道导弹,J2项引起的落点偏差最大达到15km以上;J4项引起的落点偏差最大达到60m左右;扰动重力的影响可达到数百米,为达到米级的落点精度,需考虑到30阶左右的重力场模型。  相似文献   

8.
重点围绕远程飞行器飞行轨道控制保障需求,开展了空中扰动引力计算和地面重力异常测量精度指标及海洋重力测量测线布设方案的分析与论证。首先通过解析和简化飞行器导航误差解表达式,定量估计了地球重力场对远程飞行器飞行轨迹的影响,并以一定量值的落点偏差为限定指标,研究论证了空中扰动引力的计算精度要求。在此基础上,通过对地面重力异常截断误差及数据传播误差的估计和分析,研究确定了地面/海面网格平均重力异常的观测分辨率和计算精度指标。以此为依据,提出了相对应的海洋重力测量测线布设方案,并通过数值计算验证了所提方案的合理性和有效性。  相似文献   

9.
远程飞行器和弹道导弹的精确控制与导航会受到地球外部扰动引力场的影响,实践中常利用地球重力场位系数模型计算扰动引力矢量,但其计算效率随着所用模型阶次的升高而显著降低。针对这一问题,文中提出利用OpenMP并行算法快速计算轨迹点扰动引力矢量,在不损失精度的前提下有效提高了计算效率。通过数值实验可知,所提方法可以提高扰动引力矢量的计算效率,加速比达到6倍。这也为重力场元快速计算提供了参考方案。  相似文献   

10.
地球外部扰动引力场确定的数据空间分布结构   总被引:1,自引:0,他引:1  
在对各类平均重力异常的谱特征分析的基础上,通过对积分区外高频谱误差的估计,给出了在一定精度指标下各类平均重力异常数据积分区的分布;提出了一种反映局部重力场特征的重力异常阶方差模型。讨论了平均重力异常的重点力布设。本文研究的主题虽然是空中扰动引力确定的数据结构问题,但对于地面上的高程异常和垂线偏差确定具有相类似的参考作用。  相似文献   

11.
在空域,利用严密的向上延拓公式将地面重力数据上延至空中不同高度,而后与相应的地面重力数据比较从而得到不同高度的代表误差.在频域,构建了新的代表误差模型,计算了不同高度、不同分辨率下的代表误差.实际算例表明,在空域,对于地形平坦区域,在1 km高度以下,5'空中重力数据直接代表地面重力数据的误差小于1×10-5 m/s2...  相似文献   

12.
Accurate upward continuation of gravity anomalies supports future precision, free-inertial navigation systems, since the latter cannot by themselves sense the gravitational field and thus require appropriate gravity compensation. This compensation is in the form of horizontal gravity components. An analysis of the model errors in upward continuation using derivatives of the standard Pizzetti integral solution (spherical approximation) shows that discretization of the data and truncation of the integral are the major sources of error in the predicted horizontal components of the gravity disturbance. The irregular shape of the data boundary, even the relatively rough topography of a simulated mountainous region, has only secondary effect, except when the data resolution is very high (small discretization error). Other errors due to spherical approximation are even less important. The analysis excluded all measurement errors in the gravity anomaly data in order to quantify just the model errors. Based on a consistent gravity field/topographic surface simulation, upward continuation errors in the derivatives of the Pizzetti integral to mean altitudes of about 3,000 and 1,500 m above the mean surface ranged from less than 1 mGal (standard deviation) to less than 2 mGal (standard deviation), respectively, in the case of 2 arcmin data resolution. Least-squares collocation performs better than this, but may require significantly greater computational resources.  相似文献   

13.
重力向上延拓在外部重力场逼近和航空重力测量数据质量评估中具有重要应用。本文深入分析研究了6种向上延拓计算模型的技术特点和适用条件,提出了应用超高阶位模型加地形改正、点质量方法结合移去-恢复技术实现“先向下后向上延拓”计算的实施策略,探讨了计算过程特别是前端向下延拓过程的稳定性问题。通过实际数值计算,定量评估了地形质量对不同高度向上延拓结果的影响,对比分析了不同向上延拓模型顾及地形效应的实际效果,同时对向上延拓模型计算精度进行了估计。在地形变化比较激烈的山区,地形质量对向上延拓结果的影响最大可达几十个mGal(10-5m·s-2),当计算高度为10 km时,该项影响超过3 mGal;向上延拓计算模型误差(不含数据误差影响)一般不超过1 mGal;基于超高阶位模型和地形改正信息实施向下延拓过渡的布阿桑(Poisson)积分向上延拓模型,具有计算过程简便、计算结果稳定可靠等优点。  相似文献   

14.
重力测量卫星性能不仅与轨道参数、载荷误差、数据分辨率等因素密切相关,也与反演算法有关。传统的分析方法如动力学法、短弧法等用于误差分析,不可避免将算法误差引入分析结果,使得分析结论确定性不足。为解决这一问题,提出了空域最小二乘分析法,用空域格网重力扰动数据替代重力卫星载荷数据反演地球重力场,有效避免了算法误差对于分析结果的影响。分析结果表明,重力卫星在500 km轨道高度、一次数据覆盖条件下,测量重力场最高阶数约为240阶,载荷误差为1×10-10 m·s-2·Hz-1/2水平时,测量重力场最高阶数为136阶,其累积重力异常误差为2.7 mGal,累积大地水准面误差为14 cm。要达到最优测量能力,轨道倾角通常不小于89°。为减小地球引力高频信号对于地球重力场低阶位系数估计值的影响,估计位系数最高阶数需大于240阶。  相似文献   

15.
利用最小二乘直接法反演卫星重力场模型的MPI并行算法   总被引:2,自引:0,他引:2  
周浩  罗志才  钟波  陆飚 《测绘学报》2015,44(8):833-839
针对海量卫星重力数据反演高阶次地球重力场模型的密集型计算任务与高内存耗用问题,基于MPI实现了最小二乘直接法恢复高阶次位系数的并行算法。引入并行读写、分块存储与分块计算等方式完成了设计矩阵的构建、法方程的形成与求解等密集型计算任务的并行算法,数值计算结果表明三者的并行相对效率峰值可分别达到95%、68%、63%。利用GOCE轨道跟踪和径向扰动重力梯度数据(共518 400个历元)分别反演了120、240阶次地球重力场模型,计算时间仅为40 min、7 h,内存耗用峰值仅为290 MB、1.57 GB;采用与GOCE同等噪声水平的观测数据恢复的重力场模型精度与GOCE已发布模型的解算精度相一致,联合GRACE和GOCE的解算模型能够实现二者独立信息的频谱互补,表明本文方法可高效稳定地恢复高阶次地球重力场模型。  相似文献   

16.
Ellipsoidal geoid computation   总被引:1,自引:1,他引:0  
Modern geoid computation uses a global gravity model, such as EGM96, as a third component in a remove–restore process. The classical approach uses only two: the reference ellipsoid and a geometrical model representing the topography. The rationale for all three components is reviewed, drawing attention to the much smaller precision now needed when transforming residual gravity anomalies. It is shown that all ellipsoidal effects needed for geoid computation with millimetric accuracy are automatically included provided that the free air anomaly and geoid are calculated correctly from the global model. Both must be consistent with an ellipsoidal Earth and with the treatment of observed gravity data. Further ellipsoidal corrections are then negligible. Precise formulae are developed for the geoid height and the free air anomaly using a global gravity model, given as spherical harmonic coefficients. Although only linear in the anomalous potential, these formulae are otherwise exact for an ellipsoidal reference Earth—they involve closed analytical functions of the eccentricity (and the Earths spin rate), rather than a truncated power series in e2. They are evaluated using EGM96 and give ellipsoidal corrections to the conventional free air anomaly ranging from –0.84 to +1.14 mGal, both extremes occurring in Tibet. The geoid error corresponding to these differences is dominated by longer wavelengths, so extrema occur elsewhere, rising to +766 mm south of India and falling to –594 mm over New Guinea. At short wavelengths, the difference between ellipsoidal corrections based only on EGM96 and those derived from detailed local gravity data for the North Sea geoid GEONZ97 has a standard deviation of only 3.3 mm. However, the long-wavelength components missed by the local computation reach 300 mm and have a significant slope. In Australia, for example, such a slope would amount to a 600-mm rise from Perth to Cairns.  相似文献   

17.
经典物理大地测量学利用斯托克斯方法和莫洛金斯基方法解算大地测量边值问题并给出地球外部重力场表达,若忽略1~2 m量级的动力学海面地形,静止的平均海面可认为是大地水准面,后者是与平均海平面最为接近的重力等位面。经典理论无法求解海洋内部,即地球内部重力场问题,为解决这一局限,基于地表浅层法引入“浅层海水”的概念,“浅层海水”上下界面由平均海面高模型DTU21确定,利用牛顿积分和球谐展开算法确定了最优球谐分析迭代次数,分析了“浅层海水”厚度与积分区域半径大小的关系,确定了“浅层海水”厚度为100 m、500 m和1 000 m时的最优积分区域半径为1°,厚度4 000 m时为1.5°;评估了“浅层海水”质量法移去-恢复海洋表面重力值的精度,“浅层海水”厚度100 m、500 m、1 000 m和4 000 m的均方根误差分别为0.13 mGal、0.61 mGal、1.21 mGal和3.93 mGal,验证了该方法的可靠性。基于此理论,计算了不同厚度“浅层海水”下表面的层面重力值,得到了100 m、500 m、1 000 m和4 000 m深度处层面重力值与“浅层海水”上表面重力值差的均方根,分别为22.11 mGal、110.50 mGal、220.87 mGal和877.31 mGal。  相似文献   

18.
地球重力场位系数模型可以用于计算局部重力扰动场元。然而随着地球重力场模型阶次的提高、局域重力场计算范围的增大,其计算速度往往不能满足工程需求。针对这一问题,在对位系数模型泰勒级数展开的基础上提出了采用向量运算、混合编程的方法,同时对连带勒让德函数Belikov递推方法中与经纬度无关的量进行了预先计算,有效提高了计算速度。提出的方法对于利用超高阶次重力场模型快速解算大范围、高分辨率重力场元数据以及累加求和计算具有一定的参考与借鉴意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号