共查询到17条相似文献,搜索用时 62 毫秒
1.
面向对象分类方法能够解决基于像素分类方法带来的"椒盐噪声"缺点,并能利用分割单元构建对象特征空间,从而提高分类精度。常规的面向对象分类通常会设定经验或最优分割参数,在此基础上进行面向对象遥感影像分类。然而,不同地物具有不同最优分割参数,这样会导致地物分类精度不佳。因此,采用分割参数分级化思想,使用大、中、小尺度进行分阶段分割,首先对水域和浓密植被进行分类,然后再对其他地物进行细分,能够有效提高分类精度。通过对南京市Landsat-8卫星的OLI影像进行实验,试验证明,本方法在精度和分类效率上具有一定优势,在实际工作中可以提供借鉴。 相似文献
2.
张金梅 《测绘与空间地理信息》2020,(2):169-171
对遥感影像线状地物的提取进行了深入研究分析,分别采用Snakes模型、二值形态学和面向对象处理等3种算法智能化提取线状地物。通过实验验证,3种智能算法都是行之有效的,且Snakes模型在各种线状地物提取上表现稳定,而二值形态学和面向对象算法在部分线状地物提取上表现较为突出,整体稳定性却不如Snakes模型。 相似文献
3.
4.
5.
高分辨率遥感影像多尺度分割中最优尺度选取方法综述 总被引:1,自引:0,他引:1
目前,对高分辨遥感影像进行地物获取一般采用面向对象的理念,而影像分割是面向对象理念中至关重要的初始环节,分割结果的好坏将直接影响后续的分类工作,分割尺度的选取已经成为了当前研究的一个热点。本文详细总结了前人对高分辨遥感影像多尺度分割中最优尺度的获取方法,指出了各方法的不足之处,并提出了尺度评定的研究前景。 相似文献
6.
面向对象土地利用信息提取的多尺度分割 总被引:1,自引:0,他引:1
以往面向对象影像分析的分割尺度主要依靠经验并结合目视来进行选择,带有一定的主观性.本文针对利用高分辨率遥感影像进行土地利用信息提取的目的,采用面向对象的方法完成了两个典型实验区域的多尺度分割.主要研究了分割参数的选择;重点提出了一种最优分割尺度计算模型.结果表明,此模型计算最优分割尺度方便快捷,而且计算出的最优分割尺度... 相似文献
7.
多特征多尺度相结合的高分辨率遥感影像建筑物提取 总被引:3,自引:0,他引:3
在高分辨率遥感影像中,建筑物通常表现为多尺度形态,且存在同谱异物和同物异谱现象。因此,本文提出了一种综合利用光谱特征、形状特征和纹理特征,并结合多尺度分割的建筑物分级提取方法。该方法首先对遥感影像进行形态学建筑物指数(MBI)计算,而后对其特征影像进行阈值分割,并借助形状特征参数实现建筑物初提取;然后引入面向对象思想完成遥感影像多尺度分割,并利用纹理特征实现单一尺度的建筑物对象识别;最后借助多尺度融合思想完成建筑物后提取。利用本文方法对冲绳某地区影像进行了建筑物提取试验。试验结果表明,该方法的识别查准率和查全率在对象级和像素级两方面均取得较高精度。 相似文献
8.
遥感图像中线状地物的多级识别方法 总被引:2,自引:0,他引:2
本文提出了一种将光谱信息,灰度的结构信息、几何属性、相关位置以及先验知识等综合考虑的多级识别新方法。着重对线段检测中的阈值确定方法、线段的连接和取舍、启发式图搜索线段等进行了探讨。 相似文献
9.
10.
11.
建筑物高度信息的获取是高分辨率遥感影像信息提取研究中的热点问题之一。该文提出了一套结合面向对象分类方法的建筑物高度反演技术方法。首先,利用建筑物和阴影的形态学指数,通过面向对象分类方法提取建筑物轮廓和阴影信息;然后,采用相交线平均法计算阴影长度;最后,根据阴影长度和建筑物高度的几何关系模型计算建筑物高度。采用西安市的国产资源三号(ZY-3)卫星遥感数据进行提取试验,通过171栋建筑物的实际测量高度对结果进行验证,获得了91.23%的总体精度,显示出该方法在建筑物高度信息提取研究方面具有一定的现实意义。 相似文献
12.
针对多尺度表达中同名线要素的变换问题,提出一种层次特征点控制下的线状要素Morphing变换方法,在已有的线性插值Morphing变换基础上,利用层次特征点对线要素进行分段控制,按对应弧段的结点的相对位置在本弧段的相同的相对位置处插入点,提高插值过程中点的位置对应精度,使中间比例尺的插值表达得到优化,提高Morphing变换的精度。 相似文献
13.
14.
高分辨率影像的广泛应用推进面向对象影像分析(OBIA)的发展,而分割作为面向对象分类的关键步骤,其尺度的选择直接关系到地物信息的提取。空间尺度是地物的固有属性,在合适的分割尺度下可以更好地挖掘地物信息。本文结合最大面积法和分割质量评价模型对张山营镇影像进行分割实验,先通过分析对象最大面积初步得到最优尺度范围,后结合分割质量评价模型以确定最优分割尺度层次。在此基础上,综合样本提取的光谱、纹理等特征进行规则训练,最终完成面向对象的土地覆被分类研究。结果显示:基于多层次最优尺度的规则分类方法获得更好的分类结果,其总体精度为88.8%,Kappa系数为0.861,而基于单一尺度的最邻近法总体精度81.4%,Kappa系数0.773,基于单一尺度的规则分类法总体精度为83.2%,Kappa系数为0.85。 相似文献
15.
16.
土地利用/覆被专题信息的快速、高效、准确提取是遥感图像处理研究的重要方向。传统的遥感分类方法常依靠像元的光谱值,未充分利用影像的空间信息。本文将面向对象影像分割和支持向量机方法相结合,复合光谱和纹理信息,建立了Object-SVM分类模型,并与面向对象的模糊函数和基于像元的SVM方法相比较,探寻区域尺度土地利用/覆被信息提取方法。结果显示,Object-SVM模型有效地提高了遥感图像的分类精度和分类效率,对于区域尺度影像的快速、准确、客观的信息提取具有实际意义。 相似文献
17.
基于线性混合模型的端元提取方法综述 总被引:2,自引:1,他引:2
混合像元是遥感领域研究的热点,而基于线性混合模型的光谱解混合技术正在越来越广泛地应用在光谱数据分析和遥感地物量化中,这项技术的关键就在于确定端元光谱。本文归纳了目前几种比较成熟的端元提取算法,分析了它们的主要思想和存在的优缺点,最后介绍了端元提取技术的应用及其发展趋势。 相似文献