首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
月球物理天平动对环月轨道器运动的影响   总被引:3,自引:0,他引:3  
张巍  刘林 《天文学报》2005,46(2):196-206
月球物理天平动是月球赤道在空间真实的摆动,会导致月球引力场在空间坐标系中的变化,从而引起环月轨道器(以下称为月球卫星)的轨道变化,这与地球的岁差章动现象对地球卫星轨道的影响类似.采用类似对地球岁差章动的处理方法,讨论月球物理天平动对月球卫星轨道的影响,给出相应的引力位的变化及卫星轨道的摄动解,清楚地表明了月球卫星轨道的变化规律,并和数值解进行了比对,从定性和定量方面作一讨论.  相似文献   

2.
In a previous paper of this series (Kopal, 1968a) the Eulerian equations have been set up which govern the precession and nutation of selfgravitating bodies of viscous fluid in inertial coordinates which are at rest in space. In order to facilitate their solution, in the present investigation we shall transform these equations to the rotating body-axes; and shall explicitly evaluate all their coefficients arising as a result of second-harmonic dynamical tides.Following the introductory Section 1 which contains a mathematical statement of the problem, the requisite transformation of coordinates will be outlined in Section 2, and applied to the equations of motion in Section 5. The corresponding moments and products of inertia appropriate for selfgravitating configurations of arbitrary internal structure will be formulated in Section 4; while the deformation terms arising from second-harmonic dynamical tides raised on centrally-condensed configurations will be evaluated in Sections 3 and 6. The concluding Section 7 will then contain a specification of the components of the disturbing force.The next stage of our investigation — namely, a construction of the actual solutions of the equations governing precession and nutation of fluid bodies in different cases of astrophysical interest — has been postponed for a separate paper.  相似文献   

3.
Lunar physical libration, which is true oscillation of lunar equator in the space, alters the lunar gravitational field in the space coordinate system and affects the orbiting motion of lunar orbiters (hereafter called as lunar satellites) correspondingly. The effect is very similar to that of the precession and nutation on the earth satellites, and a similar treatment can be used. The variations in the gravitational force and in the orbit perturbation solution are clearly given in this paper together with numerical illustrations.  相似文献   

4.
The motion of a lunar satellite   总被引:2,自引:0,他引:2  
Presented in this theory is a semianalytical solution for the problem of the motion of a satellite in orbit around the moon. The principal perturbations on such a body are due to the nonspherical gravity field of the moon, the attraction of the earth, and, to a lesser degree, the attraction of the sun. The major part of the problem is solved by means of the celebrated von Zeipel Method, first successfully applied to the motion of an artificial earth satellite by Brouwer in 1959. After eliminating from the Hamiltonian all terms with the period of the satellite and those with the period of the moon, it is suggested to solve the remaining problem with the aid of numerical integration of the modified equations of motion.This theory was written in 1964 and presented as a dissertation to Yale University in 1965. Since then a great deal has been learned about the gravity field of the moon. It seems that quite a number of recently determined gravity coefficients would qualify as small quantities of order two. Hence, according to the truncation criteria employed, they should be considered in the present theory. However, the author has not endeavored to update the work accordingly. The final results, therefore, are incomplete in the lunar gravitational perturbations. Nevertheless, the theory does give the largest such variations and it does present the methods by which perturbations may be derived for any gravity terms not actually developed.  相似文献   

5.
The motion of a rigid body about a fixed point, under the influence of an attractive force, is investigated from a physical basis. The errors in Euler's equations were shown, and appropriate equations were derived. It was also found that by nutation in the direction of decreasing only and oscillatory precession any two bodies, assumed as oblate spheroids, move in the direction of a zero external moment, as their stable equilibrium position. This position corresponding to the minimum kinetic energy of rotation is also reached by any two bodies which were initially acted upon by an external torque.  相似文献   

6.
In preceding papers of this series (Kopal, 1968; 1969) the Eulerian equations have been set up which govern the precession and nutation of self-gravitating fluid globes of arbitrary structures in inertial coordinates (space-axes) as well as with respect to the rotating body axes; with due account being taken of the effects arising from equilibrium as well as dynamical tides.In Section 1 of the present paper, the explicit form of these equations is recapitulated for subsequent solations. Section 2 contains then a detailed discussion of the coplanar case (in which the equation of the rotating configuration and the plane of its orbit coincide with the invariable plane of the system); and small fluctuations in the angular velocity of axial rotation arising from the tidal breathing in eccentric binary systems are investigated.In Section 3, we consider the angular velocity of rotation about theZ-axis to be constant, but allow for finite inclination of the equator to the orbital plane. The differential equations governing such a problem are set up exactly in terms of the time-dependent Eulerian angles and , and their coefficients averaged over a cycle. In Section 4, these equations are linearized by the assumption that the inclinations of the equator and the orbit to the invariable plane of the system are small enough for their squares to be negligible; and the equations of motion reduced to their canonical form.The solution of these equations — giving the periods of precession and nutation of rotating components of close binary systems, as well as the rate of nodal regression which is synchronised with precession — are expressed in terms of the physical properties of the respective system and of its constituent components; while the concluding Section 6 contains a discussion of the results, in which the differences between the precession and nutation of rigid and fluid bodies are pointed out.  相似文献   

7.
8.
In this paper, the series RDAN97 recently published (Roosbeek and Dehant, 1998) is completed by computing the diurnal and subdiurnal nutation terms. The method used is based on computing the torque induced by the external bodies on the rigid earth. The ephemerides used are analytical and based on celestial mechanics considerations. With a truncation level of 0.1 μas, 115 terms in longitude and 78 terms in obliquity have been computed. These terms correspond to the influence of the earth's geopotential coefficients c2,2 and s2,2, c3,m and s3,m (for the interaction between the earth and the moon and the sun), and c4,m and s4,m (for the interaction between the earth and the moon). A comparison with the recent theories REN‐2000 (Souchay and Kinoshita, 1996, 1997) and SMART97 (Bretagnon et al., 1997, 1998) shows that our series is at a very high precision, better than the most recent VLBI campaigns. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
A semi-analytical solution to the problem of the motion of a satellite of the moon is presented. Perturbative effects which are considered include those due to the attraction of the moon, earth, and sun, the non-sphericity of the moon's gravitational field, coupling of lower-order terms, solar radiation pressure, and physical libration. Short-period terms and intermediate-period terms, terms with the period of the moon's longitude, are produced by means of von Zeipel's method; it is proposed to obtain the secular perturbations, and those depending only on the argument of perilune, by numerical integration of the equations of motions. The short-period terms and intermediate-period terms are developed up to second order, where first order is 10–2. The secular perturbations and perturbations dependent on the argument of perilune are obtained to third order.  相似文献   

10.
In 1918, J. Lense and H. Thirring calculated that a moon in orbit around a massive rotating planet would experience a nodal dragging effect due to general relativity. We describe an experiment to measure this effect by means of two counter-orbiting drag-free satellites in polar orbit about the earth. For a 2 1/2 year experiment, the measurement should approach an accuracy of 1%. An independent measurement of the geodetic precession of the orbit plane due to the motion about the sun may also be possible to about 10% accuracy. In addition to precision tracking data from existing ground stations, satellite-to-satellite Doppler data are taken at points of passing near the poles to yield an accurate measurement of the separation distance between the two satellites. New geophysical information on both earth harmonics and tidal effects is inherent in this polar ranging data.Work supported partially by NASA Grant No. NGR 05-020-019 through the Marshall Space Flight Center and by NASA Contract No. 5-21960 through the Goddard Space Flight Center.  相似文献   

11.
12.
Effects of an interaction between the mantle and the core of the Earth on its rotational motion are investigated. Assuming that the Earth consists of a rigid mantle and a rigid core with a frictional coupling and a kind of inertial coupling between them, the equations of motion are derived, and they are solved in a close approximation. The solution gives the expressions for the precession, the nutation, the secular changes in the obliquity and the rotational speed, the polar motion and so on as functions of the magnitudes of these forces. A numerical estimation shows that the effect of the friction on the amplitude and phase of the nutation is small for a reasonable intensity of the friction while inertial coupling force has a decisive influence on the amplitude, and an appropriately chosen value of the latter force gives a nutation which closely agrees with observations. It is also indicated that this torque remarkably lessens the rates of the secular changes in the obliquity and the rotational speed. The possibility of a periodical change in the amplitude of the polar motion is suggested as a result of the interaction between the two consituents.  相似文献   

13.
火星是类地行星,火星动力学的研究不仅具有科学意义,而且还具有实际应用价值。火星的空间探测获得了许多有关火星极运动的重要资料,它与理论值的比较是检验火星内部结构的重要手段,也是为改进火星岁差章动理论提供依据的有效途径。介绍了当前国际上有关火星的岁差和章动研究的进展,分别对刚体火星的章动序列、火星内部结构参数化模型的建立和火星自转的简正模作了描述,并进行了简单的讨论。  相似文献   

14.
中国地球自转和地壳运动监测的研究工作   总被引:4,自引:0,他引:4  
主要介绍了1995年至1998年期间有关中国地球自转和地壳运动监测的研究工作及取 得的进展。  相似文献   

15.
Satellite orbital perturbations due to many rotations of the planet-fixed reference frame are calculated by a general analytical method. For the International Terrestrial Reference Frame (ITRF) the effects of the Earth irregular rotation, precession, nutation, and polar motion are considered. Gravity coefficients of the Earth potential expansion are expressed in an inertial Celestial Reference Frame (CRF) as functions of the set of standard constant coefficients derived in the ITRF and of the rotation angles between the CRF and ITRF. The analytical motion theory uses time dependent gravity coefficients, and the Lagrange motion equations are integrated in the CRF, as it is done by numerical methods. Comparison of the proposed analytical method with a numerical one is presented. Motion of the ETALON-1 geodetic satellite perturbed by the geopotential (36*36) and by the full effects of the Earth irregular rotation, precession, nutation and polar motion is predicted. The r.m.s. difference between the satellite's coordinates calculated by both methods over a year interval is 2 cm. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
We have investigated the resonances in the earth-moon system around the sun including earth’s equatorial ellipticity. The resonance resulting from the commensurability between the mean motion of the moon and Γ (angle measured from the minor axis of the earth’s equatorial ellipse to the projection of the moon on the plane of the equator) is analyzed. The amplitude and the time period of the oscillation have been determined by using the procedure of Brown and Shook. We have shown the effects of Γ on the amplitude and the time period of the resonance oscillation using the data of the moon. It is observed that the amplitude decreases and the time period also decreases as Γ increases from 0° to 45°.  相似文献   

17.
Differential equations describing the tidal evolution of the earth's rotation and of the lunar orbital motion are presented in a simple close form. The equations differ in form for orbits fixed to the terrestrial equator and for orbits with the nodes precessing along the ecliptic due to solar perturbations. Analytical considerations show that if the contemporary lunar orbit were equatorial the evolution would develop from an unstable geosynchronous orbit of the period about 4.42 h (in the past) to a stable geosynchronous orbit of the period about 44.8 days (in the future). It is also demonstrated that at the contemporary epoch the orbital plane of the fictitious equatorial moon would be unstable in the Liapunov's sense, being asymptotically stable at early stages of the evolution. Evolution of the currently near-ecliptical lunar orbit and of the terrestrial rotation is traced backward in time by numerical integration of the evolutional equations. It is confirmed that about 1.8 billion years ago a critical phase of the evolution took place when the equatorial inclination of the moon reached small values and the moon was in a near vicinity of the earth. Before the critical epoch t cr two types of the evolution are possible, which at present cannot be unambiguously distinguished with the help of the purely dynamical considerations. In the scenario that seems to be the most realistic from the physical point of view, the evolution also has started from a geosynchronous equatorial lunar orbit of the period 4.19 h. At t < t cr the lunar orbit has been fixed to the precessing terrestrial equator by strong perturbations from the earth's flattening and by tidal effects; at the critical epoch the solar perturbations begin to dominate and transfer the moon to its contemporary near-ecliptical orbit which evolves now to the stable geosynchronous state. Probably this scenario is in favour of the Darwin's hypothesis about originating the moon by its separation from the earth. Too much short time scale of the evolution in this model might be enlarged if the dissipative Q factor had somewhat larger values in the past than in the present epoch. Values of the length of day and the length of month, estimated from paleontological data, are confronted with the results of the developed model.  相似文献   

18.
The article analyzes the precession–nutation variations in right ascension of stars after the introduction Celestial Intermediate Origin (CIO) as a new origin of the right ascensions. It points out that changes in right ascension depend not only on the motion of the origin, but also on the changes of the pole and hour circles, depending on the position of stars. This explains the apparent paradox that, for certain groups of stars, despite the almost complete elimination of the precession and nutation motion of the CIO on the equator, the magnitude of the variations in right ascension related to the CIO can exceed the magnitude of the classic variations referred to the equinox.  相似文献   

19.
The precession of the orbital plane in a close binary system can provide an important observational tool for investigating dynamical properties of the components. Tidal evolution will always tend to align the rotation axes perpendicular to the orbital plane, thereby eliminating precession. It is pointed out, however, that if observations indicate the existence of a circular orbit and synchronous rotation of the components-which is the outcome of tidal evolution-then precession may still be present, provided the interior of one of the components is, or recently has been, radiative, and is not strongly coupled to the surface layers (where tidal dissipation is greatest). The equations governing precession and nutation are derived in a concise form, and applied to the numerical study of two binary systems. The observational effects are also discussed. Finally, it is pointed out that precession may be present in a subclass of the X-ray binary systems, and its observational significance is briefly discussed.  相似文献   

20.
The aim of the present study has been to set the system of differential equations which govern the precession and nutation of self-gravitating globes of compressible viscous fluid, due to the attraction exerted on the rotating configuration by its companion; and to construct their approximate solution which are correct to terms of the second order in small dependent variables of the problem. Section 2 contains an explicit formulation of the effects of viscosity arising in this connection, given exactly as far as the viscosity remains a function of radial distancer only; but irrespective of its magnitude. In Section 3 the equations of motion will be linearized for the case of near-circular orbits and small inclinations andi of the equator of the rotating configuration, and of its orbital plane, to the invariable plane of the system; while in Section 4 further simplifications will be introduced which are legitimate for studies of secular (or long-periodic) motions of the nodes and inclinations. The actual solutions of so simplified a system of equations are constructed in Section 5; and these represent a generalization of the results obtained in our previous investigation (Kopal, 1969) of the inviscid case.The physical significance of the new results will be discussed in the concluding Section 6. It is demonstrated that the axes of rotation of deformable components in close binary systems are initially inclined to the orbital plane, viscous dissipation produced by dynamical tides will tend secularly to rectify their positions until perpendicularity to the orbital plane has been established, and the equators as well as orbit made to coincide with the invariable plane of the system-in a similar manner as other effects of tidal friction are bound eventually to synchronize the velocity of axial rotation with that of orbital revolution in the course of time.An application of the results of the present study to the dynamics of the Earth-Moon system discloses that the observed inclination of 1°.5 of the lunar equator to the ecliptic cannot be regarded as being secularly constant, but representing the present deviations from perpendicularity of oscillatory motion of very long period.The Lunar Science Institute is operated by the Universities Space Research Association under Contract No. NSR-09-051-001 with the National Aeronautics and Space Administration. This paper constitutes the Lunar Science Institute Contribution No. 85.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号