共查询到20条相似文献,搜索用时 10 毫秒
1.
A. Rosi V. Tofani L. Tanteri C. Tacconi Stefanelli A. Agostini F. Catani N. Casagli 《Landslides》2018,15(1):5-19
In this paper, the updating of the landslide inventory of Tuscany region is presented. To achieve this goal, satellite SAR data processed with persistent scatter interferometry (PSI) technique have been used. The updating leads to a consistent reduction of unclassified landslides and to an increasing of active landslides. After the updating, we explored the characteristics of the new inventory, analysing landslide distribution and geomorphological features. Several maps have been elaborated, as sliding index or landslide density map; we also propose a density-area map to highlight areas with different landslide densities and sizes. A frequency-area analysis has been performed, highlighting a classical negative power-law distribution. We also explored landslide frequency for lithology, soil use and several morphological attributes (elevation, slope gradient, slope curvature), considering both all landslides and classified landslide types (flows, falls and slides). 相似文献
2.
Chong Xu Xiwei Xu Fuchu Dai Zhide Wu Honglin He Feng Shi Xiyan Wu Suning Xu 《Natural Hazards》2013,68(2):883-900
The main purpose of this paper is to present the use of multi-resource remote sensing data, an incomplete landslide inventory, GIS technique and logistic regression model for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China. Landslide location polygons were delineated from visual interpretation of aerial photographs, satellite images in high resolutions, and verified by selecting field investigations. Eight factors, including slope angle, slope aspect, elevation, distance from drainages, distance from roads, distance from main faults, seismic intensity and lithology were selected as controlling factors for earthquake-triggered landslide susceptibility mapping. Qualitative susceptibility analyses were carried out using the map overlaying techniques in GIS platform. The validation result showed a success rate of 82.751 % between the susceptibility probability index map and the location of the initial landslide inventory. The predictive rate of 86.930 % was obtained by comparing the additional landslide polygons and the landslide susceptibility probability index map. Both the success rate and the predictive rate show sufficient agreement between the landslide susceptibility map and the existing landslide data, and good predictive power for spatial prediction of the earthquake-triggered landslides. 相似文献
3.
Guruh Samodra Guangqi Chen Junun Sartohadi Kiyonobu Kasama 《Environmental Earth Sciences》2017,76(4):184
There are different approaches and techniques for landslide susceptibility mapping. However, no agreement has been reached in both the procedure and the use of specific controlling factors employed in the landslide susceptibility mapping. Each model has its own assumption, and the result may differ from place to place. Different landslide controlling factors and the completeness of landslide inventory may also affect the different result. Incomplete landslide inventory may produce significance error in the interpretation of the relationship between landslide and controlling factor. Comparing landslide susceptibility models using complete inventory is essential in order to identify the most realistic landslide susceptibility approach applied typically in the tropical region Indonesia. Purwosari area, Java, which has total 182 landslides occurred from 1979 to 2011, was selected as study area to evaluate three data-driven landslide susceptibility models, i.e., weight of evidence, logistic regression, and artificial neural network. Landslide in the study area is usually affected by rainfall and anthropogenic activities. The landslide typology consists of shallow translational and rotational slide. The elevation, slope, aspect, plan curvature, profile curvature, stream power index, topographic wetness index, distance to river, land use, and distance to road were selected as landslide controlling factors for the analysis. Considering the accuracy and the precision evaluations, the weight of evidence represents considerably the most realistic prediction capacities (79%) when comparing with the logistic regression (72%) and artificial neural network (71%). The linear model shows more powerful result than the nonlinear models because it fits to the area where complete landslide inventory is available, the landscape is not varied, and the occurence of landslide is evenly distributed to the class of controlling factor. 相似文献
4.
Evaluation and comparison of GIS based landslide susceptibility mapping procedures in Kulekhani watershed, Nepal 总被引:2,自引:0,他引:2
Prabin Kayastha Megh Raj Dhital Florimond De Smedt 《Journal of the Geological Society of India》2013,81(2):219-231
The goal of this paper is to evaluate and compare the consistency of GIS-based heuristic and bivariate landslide susceptibility mapping techniques in the Himalayan region, taking the Kulekhani watershed of central Nepal as an example. For this purpose, a heuristic and two statistical bivariate landslide susceptibility mapping methods are applied, and three separate landslide susceptibility zonation maps are produced. The maps are compared using three approaches: landslide density analysis, success rate analysis, and agreed area analysis. A comparison of the values obtained from landslide density analysis and the curves of success rate analysis indicate that the two bivariate methods produce almost identical results, whereas the map produced with the heuristic method differs significantly from the others. On the other hand, the agreed area analysis highlights significant spatial differences in the maps obtained from the three methods. Although the three approaches evaluate the consistency of susceptibility maps, only the agreed area analysis is capable of spatially comparing them. Hence, this approach proves to be more suitable for spatially and quantitatively evaluating the consistency of various landslide susceptibility zonation maps. 相似文献
5.
Frequency ratio model based landslide susceptibility mapping in lower Mae Chaem watershed, Northern Thailand 总被引:2,自引:2,他引:2
The purpose of this study is to produce a landslide susceptibility map for the lower Mae Chaem watershed, northern Thailand
using a Geographic Information System (GIS) and remotely sensed images. For this purpose, past landslide locations were identified
from satellite images and aerial photographs accompanied by the field surveys to create a landslide inventory map. Ten landslide-inducing
factors were used in the susceptibility analysis: elevation, slope angle, slope aspect, lithology, distance from lineament,
distance from drainage, precipitation, soil texture, land use/land cover (LULC), and NDVI. The first eight factors were prepared
from their associated database while LULC and NDVI maps were generated from Landsat-5 TM images. Landslide susceptibility
was analyzed and mapped using the frequency ratio (FR) model that determines the level of correlation between locations of
past landslides and the chosen factors and describes it in terms of frequency ratio index. Finally, the output map was validated
using the area under the curve (AUC) method where the success rate of 80.06% and the prediction rate of 84.82% were achieved.
The obtained map can be used to reduce landslide hazard and assist with proper planning of LULC in the future. 相似文献
6.
本文发展了一种基于分形统计的滑坡易发程度评价方法,该方法仅使用已有的滑坡数据,首先通过分形统计获得滑坡分布的分形丛集关系,再通过GIS的空间操作与分析生成滑坡易发程度区划图。提出一种对滑坡易发程度区划图的可信度和预测效果进行评价的方法。本文介绍了这些方法及其在浙江地区应用的结果。 相似文献
7.
Statistical modelling of Europe-wide landslide
susceptibility using limited landslide inventory data 总被引:2,自引:0,他引:2
M. Van Den Eeckhaut J. Hervás C. Jaedicke J.-P. Malet L. Montanarella F. Nadim 《Landslides》2012,9(3):357-369
In many regions, the absence of a landslide inventory hampers the production of susceptibility or hazard maps. Therefore, a method combining a procedure for sampling of landslide-affected and landslide-free grid cells from a limited landslide inventory and logistic regression modelling was tested for susceptibility mapping of slide- and flow-type landslides on a European scale. Landslide inventories were available for Norway, Campania (Italy), and the Barcelonnette Basin (France), and from each inventory, a random subsample was extracted. In addition, a landslide dataset was produced from the analysis of Google Earth images in combination with the extraction of landslide locations reported in scientific publications. Attention was paid to have a representative distribution of landslides over Europe. In total, the landslide-affected sample contained 1,340 landslides. Then a procedure to select landslide-free grid cells was designed taking account of the incompleteness of the landslide inventory and the high proportion of flat areas in Europe. Using stepwise logistic regression, a model including slope gradient, standard deviation of slope gradient, lithology, soil, and land cover type was calibrated. The classified susceptibility map produced from the model was then validated by visual comparison with national landslide inventory or susceptibility maps available from literature. A quantitative validation was only possible for Norway, Spain, and two regions in Italy. The first results are promising and suggest that, with regard to preparedness for and response to landslide disasters, the method can be used for urgently required landslide susceptibility mapping in regions where currently only sparse landslide inventory data are available. 相似文献
8.
Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran 总被引:9,自引:1,他引:9
Hamid Reza Pourghasemi Biswajeet Pradhan Candan Gokceoglu Majid Mohammadi Hamid Reza Moradi 《Arabian Journal of Geosciences》2013,6(7):2351-2365
The main goal of this study was to investigate the application of the weights-of-evidence and certainty factor approaches for producing landslide susceptibility maps of a landslide-prone area (Haraz) in Iran. For this purpose, the input layers of the landslide conditioning factors were prepared in the first stage. The landslide conditioning factors considered for the study area were slope gradient, slope aspect, altitude, lithology, land use, distance from streams, distance from roads, distance from faults, topographic wetness index, stream power index, stream transport index and plan curvature. For validation of the produced landslide susceptibility maps, the results of the analyses were compared with the field-verified landslide locations. Additionally, the receiver operating characteristic curves for all the landslide susceptibility models were constructed and the areas under the curves were calculated. The landslide locations were used to validate results of the landslide susceptibility maps. The verification results showed that the weights-of-evidence model (79.87%) performed better than certainty factor (72.02%) model with a standard error of 0.0663 and 0.0756, respectively. According to the results of the area under curve evaluation, the map produced by weights-of-evidence exhibits satisfactory properties. 相似文献
9.
Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran 总被引:33,自引:8,他引:33
The main goal of this study is to produce landslide susceptibility maps of a landslide-prone area (Haraz) in Iran by using both fuzzy logic and analytical hierarchy process (AHP) models. At first, landslide locations were identified by aerial photographs and field surveys, and a total of 78 landslides were mapped from various sources. Then, the landslide inventory was randomly split into a training dataset 70?% (55 landslides) for training the models and the remaining 30?% (23 landslides) was used for validation purpose. Twelve data layers, as the landslide conditioning factors, are exploited to detect the most susceptible areas. These factors are slope degree, aspect, plan curvature, altitude, lithology, land use, distance from rivers, distance from roads, distance from faults, stream power index, slope length, and topographic wetness index. Subsequently, landslide susceptibility maps were produced using fuzzy logic and AHP models. For verification, receiver operating characteristics curve and area under the curve approaches were used. The verification results showed that the fuzzy logic model (89.7?%) performed better than AHP (81.1?%) model for the study area. The produced susceptibility maps can be used for general land use planning and hazard mitigation purpose. 相似文献
10.
Evaluation of the consistency of landslide susceptibility mapping: a case study from the Kankai watershed in east Nepal 总被引:3,自引:1,他引:3
GIS-based landslide susceptibility maps for the Kankai watershed in east Nepal are developed using the frequency ratio method and the multiple linear regression technique. The maps are derived from comparing observed landslides with possible causative factors: slope angle, slope aspect, slope curvature, relative relief, distance from drainage, land use, geology, distance from faults and mean annual rainfall. The consistency of the maps is evaluated using landslide density analysis, success rate analysis and spatially agreed area approach. The first two analyses produce almost identical quantitative results, whereas the last approach is able to reveal spatial differences between the maps and also to improve predictions in the agreed high landslide-susceptible area. 相似文献
11.
Netra Prakash Bhandary Ranjan Kumar Dahal Manita Timilsina Ryuichi Yatabe 《Natural Hazards》2013,69(1):365-388
Landslide susceptibility assessment is a major research topic in geo-disaster management. In recent days, various landslide susceptibility and landslide hazard assessment methodologies have been introduced with diverse thoughts of assessment and validation method. Fundamentally, in landslide susceptibility zonation mapping, the susceptibility predictions are generally made in terms of likelihoods and probabilities. An overview of landslide susceptibility zoning practices in the last few years reveals that susceptibility maps have been prepared to have different accuracies and reliabilities. To address this issue, the work in this paper focuses on extreme event-based landslide susceptibility zonation mapping and its evaluation. An ideal terrain of northern Shikoku, Japan, was selected in this study for modeling and event-based landslide susceptibility mapping. Both bivariate and multivariate approaches were considered for the zonation mapping. Two event-based landslide databases were used for the susceptibility analysis, while a relatively new third event landslide database was used in validation. Different event-based susceptibility zonation maps were merged and rectified to prepare a final susceptibility zonation map, which was found to have an accuracy of more than 77 %. The multivariate approach was ascertained to yield a better prediction rate. From this study, it is understood that rectification of susceptibility zonation map is appropriate and reliable when multiple event-based landslide database is available for the same area. The analytical results lead to a significant understanding of improvement in bivariate and multivariate approaches as well as the success rate and prediction rate of the susceptibility maps. 相似文献
12.
13.
Guglielmo Rossi Luca Tanteri Veronica Tofani Pietro Vannocci Sandro Moretti Nicola Casagli 《Landslides》2018,15(5):1045-1052
This paper presents the preliminary results of the IPL project 196 “Development and applications of a multi-sensor drone for geohazards monitoring and mapping.” The objective of the project is to test the applicability of a multi-sensor drone for the mapping and monitoring of different types of geohazards. The Department of Earth Sciences of the University of Florence has developed a new type of drone airframe. Several survey campaigns were performed in the village of Ricasoli, in the Upper Arno river Valley (Tuscany, Italy) with the drone equipped with an optical camera to understand the possibility of this rising technology to map and characterize landslides. The aerial images were combined and analyzed using Structure-from-Motion (SfM) software. The collected data allowed an accurate reconstruction and mapping of the detected landslides. Comparative analysis of the obtained DTMs also permitted the detection of some slope portions being prone to failure and to evaluate the area and volume of the involved mass. 相似文献
14.
殷坤龙 《水文地质工程地质》1993,20(5):21-23
本文在滑坡灾害预测分区的信息模型基础上,重点讨论了灾害预测的计算机制图化的主要过程:因素的数值化,单元边界的确定和彩色图件的绘制。运用中国地质大学计算机系开发的Mapcad系统,在Mv/10000计算机上较好地处理了不规则图幅边界的自然裁剪,不规则单元的输入,以及彩色图件的绘制等问题。 相似文献
15.
16.
在对泾阳南塬实地调查中发现,位于泾河与塬边交切处,发育有数量较多的黄土滑坡,分析认为河流作用是该类滑坡发生的主要诱发因素。通过实地调查,对饱和Q2黄土进行减围压三轴剪切试验以及数值模拟,研究河流作用诱发黄土滑坡的形成机理。研究表明:土体抗剪强度与应力路径有关,减围压三轴剪切状态下,土体抗剪强度指标小于常规三轴剪切状态下的抗剪强度指标,土体更容易发生剪切破坏;斜坡坡脚处存在关键块体,对斜坡整体稳定性起着控制作用。河流作用诱发黄土滑坡就是因为河流的持续侧蚀,造成坡脚关键块体逐步滑塌,最终导致斜坡失稳滑动。 相似文献
17.
Rain-induced landslides are recognized as one of the most catastrophic hazards on hilly terrains. To develop strategies for landslide risk assessment and management, it is necessary to estimate not only the rainfall threshold for the initiation of landslides, but also the likely magnitudes of landslides triggered by a storm of a given intensity. In this study, the frequency distributions of both open hillside landslides and channelized debris flows in Hong Kong are established on the basis of the Enhanced Natural Terrain Landslide Inventory (ENTLI) with 19,763 records in Hong Kong up to 2013. The landslide magnitudes are measured in terms of the number, scar area, volume, or density of landslides. The mean values of the scar areas and volumes are 55.2 m2 and 102.0 m3, respectively, for the open hillside landslides and 91.3 m2 and 166.5 m3, respectively, for the channelized debris flows. Empirical correlations between the numbers, scar areas, and volumes of hillside landslides or channelized debris flows and the maximum rolling rainfall intensities of different periods have been derived. The maximum rolling 4- to 24-h rainfall amounts provide better predictions compared with those with the maximum rolling 1-h rainfall. Maximum rolling rainfall intensity-duration thresholds identifying the likely rainfall conditions that yield natural terrain landslides or debris flows of different magnitudes are also proposed. The initiation rainfall thresholds are identified as 75, 90, 100, 120, 150, 180, and 200 mm for the maximum rolling 1-, 2-, 4-, 6-, 8-, 12-, and 24-h rainfall, respectively. 相似文献
18.
黄土滑坡的基本类型与活动特征 总被引:37,自引:2,他引:37
按滑体岩土组成和滑面发育位置,黄土地区的滑坡可划分为黄土层内滑坡、黄土接触面滑坡、黄土-泥岩顺层滑坡、黄土-泥岩切层滑坡4种基本类型。黄土接触面滑坡、黄土-泥岩顺层滑坡的滑速低、滑距短,滑体具有稳定性差、复活性强的特点。黄土层内滑坡、黄土-泥岩切层滑坡的滑速高、滑距长,滑体稳定性高。但后壁不稳定,易再次滑动。这些基本规律对黄土滑坡研究和防治、滑坡灾害预测有一定指导意义和实用价值。 相似文献
19.
A heuristic approach to global landslide susceptibility mapping 总被引:1,自引:0,他引:1
Landslides can have significant and pervasive impacts to life and property around the world. Several attempts have been made to predict the geographic distribution of landslide activity at continental and global scales. These efforts shared common traits such as resolution, modeling approach, and explanatory variables. The lessons learned from prior research have been applied to build a new global susceptibility map from existing and previously unavailable data. Data on slope, faults, geology, forest loss, and road networks were combined using a heuristic fuzzy approach. The map was evaluated with a Global Landslide Catalog developed at the National Aeronautics and Space Administration, as well as several local landslide inventories. Comparisons to similar susceptibility maps suggest that the subjective methods commonly used at this scale are, for the most part, reproducible. However, comparisons of landslide susceptibility across spatial scales must take into account the susceptibility of the local subset relative to the larger study area. The new global landslide susceptibility map is intended for use in disaster planning, situational awareness, and for incorporation into global decision support systems. 相似文献
20.
Three-dimensional mapping of a landslide using a multi-geophysical approach: the Quesnel Forks landslide 总被引:4,自引:3,他引:4
A landslide located on the Quesnel River in British Columbia, Canada is used as a case study to demonstrate the utility of a multi-geophysical approach to subsurface mapping of unstable slopes. Ground penetrating radar (GPR), direct current (DC) resistivity and seismic reflection and refraction surveys were conducted over the landslide and adjacent terrain. Geophysical data were interpreted based on stratigraphic and geomorphologic observations, including the use of digital terrain models (DTMs), and then integrated into a 3-dimensional model. GPR surveys yielded high-resolution data that were correlated with stratigraphic units to a maximum depth of 25 m. DC electrical resistivity offered limited data on specific units but was effective for resolving stratigraphic relationships between units to a maximum depth of 40 m. Seismic surveys were primarily used to obtain unit boundaries up to a depth of >80 m. Surfaces of rupture and separation were successfully identified by GPR and DC electrical resistivity techniques. 相似文献