共查询到20条相似文献,搜索用时 15 毫秒
2.
自1949年建国至今70 a来,我国气象工作者对中国暴雨的特点和规律等做了大量研究并取得了丰硕成果。本文主要就中国暴雨的特点、环流形势、天气系统、形成机制及其诊断和预报方法等方面的研究进展做一简要回顾。研究表明:(1)中国暴雨具有明显的地域性、季节性和阶段性特点。东部地区有三个季节性大雨带,自南向北移动,具有明显跳跃性。大范围降水的环流形势有稳定经向型、稳定纬向型及中低纬相互作用型等基本类型。各地区暴雨又各有独特的典型形势。(2)西风带长波槽、阻塞高压、副热带高压和热带环流等行星尺度系统以及东亚夏季风系统与我国夏季的降水有密切关系。低槽、气旋、静止锋、高空冷涡、低空切变线、低涡和高低空急流等中纬度天气系统在大部分强降水过程中扮演重要角色。台风是最强的暴雨天气系统,大部分近海省市最强降水均与台风相关。(3)中尺度系统与暴雨关系密切,特别是中尺度对流系统,通常是暴雨的直接制造者或载体。本文讨论了基于大气动力学和热力学理论的各种暴雨诊断分析方法,通过诊断分析使暴雨研究客观化和定量化,有助于深入认识暴雨形成机理和改进各种时效的暴雨现代天气预报,最后对如何进一步深入进行暴雨研究的问题做了思考和展望。 相似文献
4.
The objective of this study was to analyze long-term temperature-related phenomena in the eastern portion of the Middle East, focusing on the coastal region of Qatar. Extreme temperature indices were examined, which were defined by the Expert Team on Climate Change Detection and Indices, for Doha, Qatar; these indices were then compared with those from neighboring countries. The trends were calculated for a 30-year period (1983–2012), using hourly data obtained from the National Climatic Data Center. The results showed spatially consistent warming trends throughout the region. For Doha, 11 of the 12 indices studied showed significant warming trends. In particular, the warming trends were represented by an increase in the number of warm days and nights and a decrease in the number of cool nights and days. The high-temperature extremes during the night have risen at more than twice the rate of their corresponding daytime extremes. The intensity and frequency of hot days have increased, and the minimum temperature indices exhibited a higher rate of warming. The climatic changes in Doha are consistent with the region-wide heat-up in recent decades across the Middle East. However, the rapid economic expansion, increase of population since the 1990s, and urban effects in the region are thought to have intensified the rapidly warming climate pattern observed in Doha since the turn of the century. 相似文献
5.
The response of the warming magnitude over the Tibetan Plateau (TP; elevation ≥ 3000 m) to global climate change is not spatially uniform. Rather, it enhances with elevation, referred to as elevation-dependent warming (EDW). The degree of EDW over the TP is season-dependent, with the largest amplitude of 0.21°C km −1 observed during boreal winter. Several factors have been proposed in previous studies as possible drivers of TP EDW, but the relative importance of these factors has been less studied. To quantitatively identify the major drivers of TP EDW in winter over recent decades (1979–2018), the authors applied the radiative kernels diagnostic method with several datasets. The results robustly suggest that, the surface albedo feedback associated with changes in snow cover plays the leading role in TP EDW. Observations show that the snow cover has reduced significantly over regions with high elevation during the winters of the past four decades, leading to reductions in outgoing shortwave radiation and thus EDW.摘要青藏高原 (海拔≥ 3000 m 地区) 对全球气候变化的变暖响应是空间不均匀的, 其增温幅度会随着海拔升高而增大, 被称为海拔依赖性增温. 青藏高原海拔依赖性增温具有季节依赖性, 在冬季最为显著, 达0.21°C km −1. 在以往的研究中, 众多因素被认为是青藏高原海拔依赖性增温的可能驱动因素, 但关于这些因素相对重要性的研究较少. 基于多个数据集, 本文应用辐射核 (radiative kernel) 技术方法定量诊断了近几十年 (1979–2018年) 冬季不同物理过程对青藏高原海拔依赖性增温的贡献. 结果表明, 与积雪变化相关的地表反照率反馈在其中起主导作用. 观测数据分析显示, 在过去40年的冬季,高海拔地区的积雪覆盖率显著减少, 导致地表反射的短波辐射减少, 从而促进了海拔依赖性增温. 相似文献
6.
Summary A simplified hydrodynamic primitive equation model in -coordinates is described. This model includes the main physical processes that influence development and motion of mesoscale vortices over plateau regions: elevated terrain effects, effects of large-scale and synoptic-scale systems on the mesoscale systems, sensible heating from the earth's surface, moisture cycle and condensation heating released by both large-scale stable precipitation and cumulus convective precipitation, evaporation and the feedback effect of precipitation on evaporation, friction in the planetary boundary layer, horizontal diffusion by subgrid scale eddies and vertical eddy flux of meteorological elements (momentum, temperature, moisture, etc.) due to turbulence, cumulus convection and other smaller-scale physical processes. The model incorporates observed data as much as possible and equations are simplified so that it may be run using either a high-speed computer or a desktop computer.Two developing vortices that originated over the Qinghai-Xizang (Tibet) Platau and moved eastward producing heavy precipitation over the lower elevations are used to test the model. It is shown that the model is capable of simulating the major features of the vortices including the precipitation distribution and may be used for studies of mesoscale and synoptic scale weather systems over plateau regions.
Ein vereinfachtes für hochländer geeignetes hydrodynamisches mesoscale-modell Zusammenfassung Es wird ein vereinfachtes hydrodynamisches Grundgleichungsmodell in -Koordinaten be schrieben. Dieses Modell beinhaltet die wichtigsten physikalischen Prozesse, die die Entwicklung und Bewegung von mesoskaligen Wirbeln über Hochplateaus beeinflussen: Effekte der Hochfläche, Effekte von großräumigen und synoptischen Systemen, die fühlbare Wärme von der Erdoberfläche, den Feuchtigkeitskreislauf und die Kondensationswärme, sowohl von großräumigen als auch von Konvektionsniederschlägen, die Evaporation und die Beeinflussung der Evaporation durch den Niederschlag, die Reibung in der planetaren Grenzschicht, die horizontale Diffusion durch Turbulenzen, die kleiner als die Gitterkonstante sind und den vertikalen Fluß meteorologischer Elemente (Impuls, Temperatur, Feuchte etc.) durch Turbulenzen, Konvektion und andere kleinräumige Prozesse. In das Modell sind die Beobachtungswerte weitestgehend integriert und die Gleichungen soweit vereinfacht, daß es sowohl auf einem Hochleistungs- als auch auf einem Mikrocomputer laufen kann.Zum Testen des Modells wurden zwei sich entwickelnde Wirbel verwendet, die vom Qinghai-Xizang-Plateu (Hochland von Tibet) ausgingen, sich ostwärts bewegten und dabei zu schweren Niederschlägen in den Tiefländern führten. Es wird gezeigt, daß das Modell die wichtigsten Eigenschaften der Wirbel und die Niederschlagsverteilung simulieren und für Untersuchungen von mesoskaligen und synoptischen Wettersystemen über Hochländern herangezogen werden kann.
With 18 figures 相似文献
7.
This paper examines several prominent thermodynamic and dynamic factors responsible for the meridional and vertical warming
asymmetries using a moist coupled atmosphere–surface radiative transportive four-box climate model. A coupled atmosphere–surface
feedback analysis is formulated to isolate the direct response to an anthropogenic greenhouse gas forcing from individual
local feedbacks (water vapor, evaporation, surface sensible heat flux, and ice-albedo), and from the non-local dynamical feedback.
Both the direct response and response to water vapor feedback are stronger in low latitudes. The joint effect of the ice-albedo
and dynamical greenhouse-plus feedbacks acts to amplify the high latitude surface warming whereas both the evaporation and
dynamical greenhouse-minus feedbacks cause a reduction of the surface warming in low latitudes. The enhancement (reduction)
of local feedbacks in high (low) latitudes in response to the non-local dynamic feedback further strengthens the polar amplification
of the surface warming. Both the direct response and response to water vapor feedback lead to an increase of lapse rate in
both low and high latitudes. The stronger total dynamic heating in the mean state in high latitudes is responsible for a larger
increase of lapse rate in high latitudes in the direct response and response to water vapor feedback. The local evaporation
and surface sensible heat flux feedbacks reduce the lapse rate both in low and high latitudes through cooling the surface
and warming the atmosphere. The much stronger evaporation feedback leads to a final warming in low latitudes that is stronger
in the atmosphere than the surface. 相似文献
9.
利用1979-2018年实测降水资料对同期中国区域地面气象要素数据集(China Meteorological Forcing Dataset,CMFD)、中国全球陆面再分析40年产品(CRA-40/Land,CRA-40)再分析降水资料在湖南省内的均值、年际变化和相关性等进行比较评估。结果表明:(1)在年平均降水分布上,两套再分析资料对少雨区反映均较好,CMFD对湘西北、湘南地区降水分布反映较CRA-40好,而CRA-40对湘东地区降水分布反映好于CMFD。(2)CMFD资料和CRA-40资料的降水值绝对偏差均主要集中在0~50 mm和50.1~100 mm区间,CMFD资料分别占比56.8%和20%,CAR-40资料分别占比40%和35.8%。(3)在多年各季平均降水分布上,CMFD资料的四季平均降水均以大于实况值为主;CRA-40资料四季平均降水在湘北以负偏差为主,在湘南则以正偏差为主。(4)在年平均降水的年际变化上,两套资料各时段变化趋势均与实况一致,1979-1984年、1999-2010年年降水量呈减小趋势,1985-1998年、2011-2018年为增加趋势,对比各时段气候倾向率可知,CMFD降水资料较CRA-40更接近实况。(5)两套再分析资料的降水与实况降水的相关系数普遍在0.75以上,有90%以上的站点相关系数通过0.05显著性水平检验,再分析降水资料与实况降水资料的年际变率相关性在湘北和湘南地区最好、在湘中一带较差。 相似文献
11.
Following an earlier climatological study of North Pacific Polar Lows by employing dynamical downscaling of NCEP1 reanalysis in the regional climate model COSMO-CLM, the characteristics of Polar Low genesis over the North Pacific under different global warming scenarios are investigated. Simulations based on three scenarios from the Special Report on Emissions Scenarios were conducted using a global climate model (ECHAM5) and used to examine systematic changes in the occurrence of Polar Lows over the twenty first century. The results show that with more greenhouse gas emissions, global air temperature would rise, and the frequency of Polar Lows would decrease. With sea ice melting, the distribution of Polar Low genesis shows a northward shift. In the scenarios with stronger warming there is a larger reduction in the number of Polar Lows. 相似文献
13.
Summary Meteorological and glaciological analyses are integrated to examine the precipitation trends during the last three decades over the ice sheets covering Antarctica and Greenland. For Antarctica, the best data source is provided by glaciologically-measured trends of snow accumulation, and for limited sectors of East Antarctica consistency with precipitation amounts calculated from the atmospheric water balance equation is obtained. For Greenland, precipitation rates parameterized from atmospheric analyses yield the only comprehensive depiction. The precipitation rate over Antarctica appears to have increased by about 5% over a time period spanning the accumulation means for the 1955–65 to 1965–75 periods, while over Greenland it has decreased by about 15% since 1983 with a secondary increase over the southern part of the ice sheet starting in 1977. At the end of the 10-year overlapping period, the global sea-level impact of the precipitation changes over Antarctica dominates that for Greenland and yields a net ice-sheet precipitation contribution of roughly 0.02 mm yr –1. These changes are likely due to marked variations in the cyclonic forcing affecting the ice sheets, but are only weakly reflected in the temperature regime, consistent with the episodic nature of cyclonic precipitation. These conclusions are not founded on high quality data bases. The importance of such changes for understanding global sea-level variations argues for a modest research effort to collect simultaneous meteorological and glaciological observations in order to describe and understand the current precipitation variations over both ice sheets. Some suggestions are offered for steps that could be taken.With 8 Figures 相似文献
15.
By using a surface air temperature index (SATI) averaged over the eastern Tibetan Plateau (TP),
investigation is conducted on the short-term climate variation associated with the interannual air warming
(or cooling) over the TP in each summer month. Evidence suggests that the SATI is associated with a consistent
teleconnection pattern extending from the TP to central-western Asia and southeastern Europe. Associated
rainfall changes include, for a warming case, a drought in northern India in May and June, and a stronger
mei-yu front in June. The latter is due to an intensified upper-level northeasterly in eastern China and
a wetter and warmer condition over the eastern TP. In the East Asian regions, the time-space distributions
of the correlation patterns between SATI and rainfall are more complex and exhibit large differences from
month to month. Some studies have revealed a close relationship between the anomalous heating over the TP
and the rainfall anomaly along the Yangtze River valley appearing in the summer on a seasonal mean time-scale,
whereas in the present study, this relationship only appears in June and the signal's significance becomes
weaker after the long-term trend in the data was excluded. Close correlations between SATI and the convection
activity and SST also occur in the western Pacific in July and August: A zonally-elongated warm tone in the
SST in the northwestern Pacific seems to be a passive response of the associated circulation related to a
warm SATI. The SATI-associated teleconnection pattern provides a scenario consistently linking the broad
summer rainfall anomalies in Europe, central-western Asia, India, and East Asia. 相似文献
16.
Based on daily 500-hPa geopotential height from ERA-Interim reanalysis data, this study analyzed the day-to-day circulation variance in cold season (October–March) by composite and correlation analysis. Two same-length time periods were compared, namely, the hiatus period (1999–2013) and the rapid warming period (1984–1998). Spectral analysis revealed that over the mid–high latitudes of the Northern Hemisphere, the most outstanding peak in the daily 500-hPa geopotential height variance was of quasi-biweekly timescale (about 10–20 days), accounting for about 32% of the total variance. During the warming hiatus, quasibiweekly disturbance (QBD) changed remarkably in Northeast Asia. On average, within the domain 42°–50 °N, 128°–142 °E, the QBD variance changed from 1860 m 2 in the rapid warming period to 2475 m 2 in the hiatus period, increasing by about 33% and statistically significant at the 95% confidence level. Lead–lag analysis showed that the QBD signal could be traced back by about 14 days, with an origin around the Ural Mountains. Then, the signal developed and propogated southeastward, with its location about 10 days prior to its peak in West Siberia, and about 6 days prior to its peak in the Sayan Mountains, and finally moving to Northeast Asia. By comparing the propagation process between the two periods, we found that the propagation paths were basically the same, but there were evident differences in the intensity of the signals. The intensification of QBD may have been related to the increased energy conversion from mean flow to QBD transients. The frequency of low-temperature extremes in negative QBD phases was much higher than under normal conditions or in positive phases. Associated with the enhanced QBD, the probability of extreme low temperature increased from 19% during the rapid warming period to 27% during the warming hiatus. 相似文献
17.
利用青藏高原气象台站逐日观测资料,采用候雨量稳定通过临界阈值的方法对高原雨季起讫期进行客观定量划分,在此基础上,进一步分析增暖背景下雨季起讫期和雨季降水演变特征,并对比增暖前后高原雨季起讫期及不同等级降水的响应特征.结果表明:青藏高原雨季平均开始期为5月第3候、结束期为9月第6候、共持续28候;青藏高原雨季降水集中期为... 相似文献
18.
在全球气候变暖背景下,中国江淮流域梅雨期的气候响应趋于复杂,给江淮流域梅雨期的气候预测带来了更多的不确定因素。研究江淮梅雨期气候对全球变暖的响应,对于认识江淮梅雨变化新趋势、提高新气候背景下的汛期预报及制定防灾减灾政策均有深远意义。采用中国地面气温和降水日值数据集对近几十年来江淮地区梅雨期的气温和降水变化进行了深入分析,基于观测结果,评估了国际耦合模式比较计划第5阶段(CMIP5)的22个模式结果,并对CMIP5模式预估的21世纪中排放(RCP4.5)和高排放(RCP8.5)情景下中国江淮流域梅雨期的气温和降水变化进行了分析,并对梅雨期气候变化的机理进行了探讨。研究结果表明,在全球变暖背景下,江淮地区梅雨期气候亦发生了相应的变化,气温呈现出显著的升高趋势,降水亦发生了相应调整,在较暖年降水偏多,较冷年降水偏少。在未来全球进一步变暖的背景下,江淮地区梅雨期平均气温进一步升高,降水进一步增多,且随着排放量的增加,降水的空间分布不均匀性也在加剧。 相似文献
19.
本文利用8个CMIP5模式的日资料,预估了RCP4.5和RCP8.5情景下全球增温达1.5℃和2.0℃时西北太平洋夏季30~60天和10~20天季节内振荡(ISO)强度的变化情况.大多数模式都认为,无论增温水平或情景如何,预估结果均显示从中南半岛南部到菲律宾以东的带状区域内ISO强度增加,并且关键气象要素背景的变化会对... 相似文献
20.
A number of indices have been employed to describe weather extremes on the basis of climate regimes and public concerns. In this study, we combined these traditional indices into four groups according to whether they relate to warm (T warm), cold (T cold), wet (P wet), or dry (P dry) extremes. Analysis of the combined indices calculated for the daily temperatures and precipitation at 750 meteorological stations in Korea, China, and Japan for 1960s?C2000s shows increasing trends in T warm and P dry events and decreasing trends in T cold events in recent decades, particularly in the northern part of East Asia. A notable regional variation is an increase in the P wet events in the Korean Peninsula. We applied the same analysis to a 200-year global climate model simulation for 1900?C2099 using the National Center for Atmospheric Research-Community Climate System Model 3. During the 20th century, the changes in T warm and T cold calculated from the model data are largely consistent with those calculated from the observations, especially in northern East Asia. The model projections for the 21st century indicate statistically significant increasing T warm and decreasing T cold trends in extreme events over the region. Results obtained from historical archives and model simulations using our combined weather extreme indices suggest that northern East Asia will be subject to increased warm and dry extremes and the Korea Peninsula will experience more wet extremes. 相似文献
|