首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 850 毫秒
1.
Record Low Sea-Ice Concentration in the Central Arctic during Summer 2010   总被引:3,自引:0,他引:3  
The Arctic sea-ice extent has shown a declining trend over the past 30 years. Ice coverage reached historic minima in 2007 and again in 2012. This trend has recently been assessed to be unique over at least the last 1450 years. In the summer of 2010, a very low sea-ice concentration(SIC) appeared at high Arctic latitudes—even lower than that of surrounding pack ice at lower latitudes. This striking low ice concentration—referred to here as a record low ice concentration in the central Arctic(CARLIC)—is unique in our analysis period of 2003–15, and has not been previously reported in the literature. The CARLIC was not the result of ice melt, because sea ice was still quite thick based on in-situ ice thickness measurements.Instead, divergent ice drift appears to have been responsible for the CARLIC. A high correlation between SIC and wind stress curl suggests that the sea ice drift during the summer of 2010 responded strongly to the regional wind forcing. The drift trajectories of ice buoys exhibited a transpolar drift in the Atlantic sector and an eastward drift in the Pacific sector,which appeared to benefit the CARLIC in 2010. Under these conditions, more solar energy can penetrate into the open water,increasing melt through increased heat flux to the ocean. We speculate that this divergence of sea ice could occur more often in the coming decades, and impact on hemispheric SIC and feed back to the climate.  相似文献   

2.
A data-model intercomparison study of Arctic sea-ice variability   总被引:1,自引:0,他引:1  
Armstrong  A.  Tremblay  L.-B.  Mysak  L. 《Climate Dynamics》2003,20(5):465-476
The dynamic-thermodynamic granular rheology sea-ice model of Tremblay and Mysak is validated against 40 years of observed sea-ice concentration (SIC) data. Subsequently, the mechanisms responsible for producing SIC anomalies in the model are evaluated by studying the coupled variance (using the singular value decomposition method, SVD) between the simulated SIC anomalies and the ice speed and air temperature anomalies. To execute this validation, a 49-year (1949-97) simulation (including a 9-year spin-up period) of the Arctic and peripheral sea-ice cover using daily varying winds and monthly mean air temperatures is produced. In general, the simulated SIC variations for 1958-97 in the East Siberian, Chukchi and Beaufort seas are in agreement with observations, while larger discrepancies occur in the Laptev and Kara seas. Moreover, the sensitivity of the model to southerly wind anomalies in creating summer SIC anomalies compares well with the observed sensitivity; however, the model's sensitivity to summer air temperature anomalies is weaker than observed. The summer SIC anomalies over an entire sea are not influenced by variations in the level of river runoff. Results from the SVD analysis show that the main source of variability in the peripheral seas is associated with the variation in the strength of the Arctic High; in the East Siberian and Laptev seas, the strengthening and weakening of the Transpolar Drift Stream also play an important role. Over the entire Arctic domain, surface air temperature anomalies are negatively correlated with sea-ice anomalies. Finally, the observed downward trend in total sea-ice cover in the last two decades as well as record minima in the East Siberian Sea are well reproduced in the simulation.  相似文献   

3.
Abstract

The potential influence of a developing La Niña on Arctic sea-ice annual variability is investigated using both observational data and an atmospheric general circulation model. It is found that during the developing phase of an eastern Pacific (EP) La Niña event in June, July, and August (JJA) and September, October, and November (SON), the sea-ice concentration (SIC) over the Barents–Kara Seas declines more than 15%. The local atmospheric circulation pattern associated with the EP La Niña is characterized as a weak decrease in geopotential height over the Barents–Kara Seas, combined with an anticyclone in the North Atlantic. The corresponding southerly winds push warm waters northward into the key sea-ice reduction region and directly accelerate sea-ice melt. Meanwhile, the abundant moisture contained in the lower troposphere is transported into the Arctic region by winds resulting from the local barotropic structure. The humid atmosphere contributes to both net shortwave and longwave radiation and thus indirectly accelerates the decline in sea ice. Simulations by the European Centre Hamburg Model, version 5.4, are forced by observed sea surface temperature anomalies associated with EP La Niña events. The results of the simulations capture the North Atlantic anticyclone and reproduce the moisture transport, which supports the premise that an EP La Niña plays a crucial role in sea-ice reduction over the Barents–Kara sector from the perspective of atmospheric circulation and net surface heat flux.  相似文献   

4.
The recent decline in Arctic sea-ice cover (SIC) shows seasonal and regional characteristics. The retreat of summer sea ice has occurred mainly in the Pacific sector of the Arctic. In this study, using the moving t-test, we found an abrupt change event in the long-term sea-ice area in the Pacific sector in summer 1989. This event was linked to the phase shift of the Arctic Oscillation (AO) or the Northern Annular Mode (NAM). Corresponding with the AO/NAM phase shift from negative to positive, the area of the northern hemisphere stratospheric polar vortex decreased abruptly in winter 1988/89. Comparisons of two periods before (1979–1988) and after (1989–1993) the abrupt decrease in sea ice show that an anomalous winter sea level pressure (SLP) was induced by changes in the polar vortex leading to an anomalous cyclonic ice drift in the Pacific sector. The changes in SLP and wind field persisted into the following spring, resulting in a decrease in SIC and warming of the surface air temperature (SAT). The influence of the spring SLP and SAT on ice persisted into the following summer. Meanwhile, the increased summer net surface heat flux over the ocean and sea ice as a result of the decreased spring ice cover further contributed to the summer sea-ice melt.  相似文献   

5.
Freshwater (FW) leaves the Arctic Ocean through sea-ice export and the outflow of low-salinity upper ocean water. Whereas the variability of the sea-ice export is known to be mainly caused by changes in the local wind and the thickness of the exported sea ice, the mechanisms that regulate the variability of the liquid FW export are still under investigation. To better understand these mechanisms, we present an analysis of the variability of the liquid FW export from the Arctic Ocean for the period 1950–2007, using a simulation from an energy and mass conserving global ocean–sea ice model, coupled to an Energy Moisture Balance Model of the atmosphere, and forced with daily winds from the NCEP reanalysis. Our results show that the simulated liquid FW exports through the Canadian Arctic Archipelago (CAA) and the Fram Strait lag changes in the large-scale atmospheric circulation over the Arctic by 1 and 6 years, respectively. The variability of the liquid FW exports is caused by changes in the cyclonicity of the atmospheric forcing, which cause a FW redistribution in the Arctic through changes in Ekman transport in the Beaufort Gyre. This in turn causes changes in the sea surface height (SSH) and salinity upstream of the CAA and Fram Strait, which affect the velocity and salinity of the outflow. The SSH changes induced by the large-scale atmospheric circulation are found to explain a large part of the variance of the liquid FW export, while the local wind plays a much smaller role. We also show that during periods of increased liquid FW export from the Arctic, the strength of the simulated Atlantic meridional overturning circulation is reduced and the ocean heat transport into the Arctic is increased. These results are particularly relevant in the context of global warming, as climate simulations predict an increase in the liquid FW export from the Arctic during the twenty-first century.  相似文献   

6.
A thermodynamic-dynamic sea-ice model based on a granular material rheology developed by Tremblay and Mysak is used to study the interannual variability of the Arctic sea-ice cover during the 41-year period 1958–98. Monthly wind stress forcing derived from the National Centers for Environmental Prediction (NCEP) Reanalysis data is used to produce the year-to-year variations in the sea-ice circulation and thickness. We focus on analyzing the variability of the sea-ice volume in the Arctic Basin and the subsequent changes in sea-ice export into the Greenland Sea via Fram Strait. The relative contributions of the Fram Strait sea-ice thickness and velocity anomalies to the sea-ice export anomalies are first investigated, and the former is shown to be particularly important during several large export events. The sea-ice export anomalies for these events are next linked to prior sea-ice volume anomalies in the Arctic Basin. The origin and evolution of the sea-ice volume anomalies are then related to the sea-ice circulation and atmospheric forcing patterns in the Arctic. Large sea-ice export anomalies are generally preceded by large volume anomalies formed along the East Siberian coast due to anomalous winds which occur when the Arctic High is centered closer than usual to this coastal area. When the center of this High relocates over the Beaufort Sea and the Icelandic Low extends far into the Arctic Basin, the ice volume anomalies are transported to the Fram Strait region via the Transpolar Drift Stream. Finally, the link between the sea-ice export and the North Atlantic Oscillation (NAO) index is briefly discussed. The overall results from this study show that the Arctic Basin and its ice volume anomalies must be considered in order to fully understand the export through Fram Strait. Received: 27 January 1999 / Accepted: 8 July 1999  相似文献   

7.
The global population during the last 100 years has increased from 2 to 7.7 billion, causing an increase in greenhouse gases in the atmosphere. In order to see how population increase is directly related to physical variables of the climate, this Perspective article places observations and scenarios of climate change into context and puts forth a statistical modeling study on how the sensitive Arctic climate responds to the increasing population. The relationships between population, Arctic sea-ice extent (SIE), and surface air temperature (SAT) are very strong, with the increasing population explaining 96% of the decreasing SIE and about 80% of the increasing SAT in the Arctic. Our projection for the SIE using the population as a “proxy predictor” for a projected population of 10 billion people on the Earth in 2100, yields a SIE of 9.30 and 8.21 million km2 for a linear and squared relationship, respectively, indicating no “tipping point” for the annual ice extent in this century. This adds another dimension to climate understanding for the public at large using population as a proxy variable, instead of the more abstract CO2 parameter. This also indicates that it is important to attempt to limit the ongoing increase in population, which is the main cause of the greenhouse gas emissions, in addition to reducing per capita emissions by an exponential increase in implementing renewable energy, a formidable challenge in this century.  相似文献   

8.
利用MPI-ESM-LR模式RCP8.5情景下海冰浓度、降水、海表面温度、500 hPa位势高度和850 hPa风场等数据,对比分析了一次北极海冰突变前后春季海冰与东亚夏季降水关系的差异,并探究其可能成因.结果表明:1)北极海冰突变导致北极海冰浓度(Sea Ice Concentration,SIC)和ENSO对东亚夏...  相似文献   

9.
The time variation of the sea-ice concentration and multiyear ice fraction within the pack ice in the Arctic Basin is examined, using microwave images of sea ice recently acquired by the Nimbus-5 spacecraft and the NASA CV-990 airborne laboratory. The images used for these studies were constructed from data acquired from the Electrically Scanned Microwave Radiometer (ESMR) which records radiation from earth and its atmosphere at a wavelength of 1.55 cm. Data are analyzed for four seasons during 1973–1975 to illustrate some basic differences in the properties of the sea ice during those times. Spacecraft data are compared with corresponding NASA CV-990 airborne laboratory data obtained over wide areas in the Arctic Basin during the Main Arctic Ice Dynamics Joint Experiment (1975) to illustrate the applicability of passive-microwave remote sensing for monitoring the time dependence of sea-ice concentration (divergence). These observations indicate significant variations in the sea-ice concentration in the spring, late fall and early winter. In addition, deep in the interior of the Arctic polar sea-ice pack, heretofore unobserved large areas, several hundred kilometers in extent, of sea-ice concentrations as low as 50% are indicated.  相似文献   

10.
 The origin and space-time evolution of Beaufort-Chukchi Sea ice anomalies are studied using data and a recently developed dynamic-thermodynamic sea-ice model. First, the relative importance of anomalies of river runoff, atmospheric temperature and wind in creating anomalous sea-ice conditions in the Beaufort-Chukchi Sea is investigated. The results indicate that wind anomalies are the dominant factor responsible for creating interannual variability in the Beaufort-Chukchi Sea ice cover. Temperature anomalies appear to play a major role for longer time scale fluctuations, whereas the effects of runoff anomalies are small. The sea-ice model is then used to track the position of a positive sea-ice anomaly as it is transported by the Beaufort Gyre toward the Transpolar Drift Stream and then exported out of the Arctic Basin into the Greenland Sea via Fram Strait. The model integration shows that sea-ice anomalies originating in the western Beaufort Sea can survive a few seasonal cycles as they propogate through the Arctic Basin and can account for a notable amount of anomalous ice export into the Greenland Sea. These anomalies, however, represent a small contribution to the fresh water budget in this area when compared with sea-ice fluctuations generated by interannually varying local winds. Received: 1 May 1997/Accepted: 22 October 1997  相似文献   

11.
The seasonal melt-freeze transitions are fundamental features of the Arctic climate system. The representation of the pan-Arctic melt and freeze onset (north of 60°N) is assessed in two reanalyses and eleven CMIP5 global circulation models (GCMs). The seasonal melt-freeze transitions are retrieved from surface air temperature (SAT) across the land and sea-ice domains and evaluated against surface observations. While monthly averages of SAT are reasonably well represented in models, large model-observation and model–model disparities of timing of melt and freeze onset are evident. The evaluation against surface observations reveals that the ERA-Interim reanalysis performs the best, closely followed by some of the climate models. GCMs and reanalyses capture the seasonal melt-freeze transitions better in the central Arctic than in the marginal seas and across the land areas. The GCMs project that during the 21st century, the summer length—the period between melt and freeze onset—will increase over land by about 1 month at all latitudes, and over sea ice by 1 and 3 months at low and high latitudes, respectively. This larger summer-length increase over sea ice at progressively higher latitudes is related to a retreat of summer sea ice during the 21st century, since open water freezes roughly 40 days later than ice-covered ocean. As a consequence, by the year 2100, the freeze onset is projected to be initiated within roughly 10 days across the whole Arctic Ocean, whereas this transition varies by about 80 days today.  相似文献   

12.
The Arctic sea-ice cover has decreased in extent, area, and thickness over the last six decades. Most global climate models project that the summer sea-ice extent (SIE) will decline to less than 1 million (mill.) km2 in this century, ranging from 2030 to the end of the century, indicating large uncertainty. However, some models, using the same emission scenarios as required by the Paris Agreement to keep the global temperature below 2°C, indicate that the SIE could be about 2 mill. km2 in 2100 but with a large uncertainty of ±1.5 mill. km2. Here, the authors take another approach by exploring the direct relationship between the SIE and atmospheric CO2 concentration for the summer–fall months. The authors correlate the SIE and ln(CO2/CO2r) during the period 1979–2022, where CO2r is the reference value in 1979. Using these transient regression equations with an R2 between 0.78 and 0.87, the authors calculate the value that the CO2 concentration needs to reach for zero SIE. The results are that, for July, the CO2 concentration needs to reach 691 ± 16.5 ppm, for August 604 ± 16.5 ppm, for September 563 ± 17.5 ppm, and for October 620 ± 21 ppm. These values of CO2 for an ice-free Arctic are much higher than the targets of the Paris Agreement, which are 450 ppm in 2060 and 425 ppm in 2100, under the IPCC SSP1-2.6 scenario. If these targets can be reached or even almost reached, the “no tipping point” hypothesis for the summer SIE may be valid.  相似文献   

13.
Simulations of the Arctic sea ice cover over the last 32 years generated by the HadGEM1 coupled climate model are able to capture the observed long term decline in mean September ice extent. HadGEM1 is also capable of producing an episode of low September ice extent of similar magnitude to the anomalously low extent observed in 2007. Using a heat budget analysis, together with diagnostics partitioning the changes in ice and snow mass into thermodynamic and dynamic components, we analyse the factors driving the long term decline in the ice mass and extent as well as those causing the modelled low ice event. The long term decline in the mass of ice and snow in HadGEM1 is largely due to extra melting during the summer, partly at the top surface of the ice, and partly via extra heating from the ocean as it warms due to the ice retreat. The episode of low summer ice extent is largely driven by the synoptic conditions over the summer moving the ice across and out of the Arctic basin, and also due to pre-conditioning of the snow and ice which is thinner than usual in the Eastern Arctic at the start of the melt season. This case study demonstrates that although HadGEM1 does not capture the persistent dipole pressure anomaly observed during the summer of 2007, it represents broadly similar mechanisms of generating a low ice extent.  相似文献   

14.
The results of two oceanographic surveys, carried out by TINRO-Center in August 2003 and 2007 in the southwestern part of the Chukchi Sea under conditions of opposite regimes of atmospheric circulation in the Eastern Arctic, are given. A stationary anticyclone with the center over the Beaufort Sea in 2007 favored the transport of warm air masses to the Arctic basin and more rapid ice melting. The surface layer temperature to the east of Wrangel Island reached 12°C (6–8°C above the normal). The upwelling of bottom waters was registered in the coastal zone due to the southeastern winds, the Siberian coastal current was not observed. In summer 2003, on the contrary, the cyclonic circulation type prevailed over the eastern seas of the Arctic, the northwestern winds in the coastal zone favored the spreading of the Siberian coastal current almost up to Bering Strait, the water temperature was 2–3°C below normal. The coastal thermal front was formed in both situations: in the first case, due to upwelling, in the second case, due to the spreading of cold coastal desalinated East Siberian waters.  相似文献   

15.
On 15 September 2020,the Arctic sea-ice extent(SIE)reached its annual minimum,which,based on data from the National Snow and Ice Data Center(NSIDC,2020a),was about 3.74 million km2(1.44 million square miles).This value was about 40%less than the climate aver-age(~6.27 million km2)during 1980-2010.It was second only to the record low(3.34 million km2)set on 16 September 2012,but signifi-cantly smaller than the previous second-lowest(4.145 million km2,set on 7 September 2016)and third-lowest(4.147 million km2,set on 14 September 2007)values,making 2020 the second-lowest SIE year of the satellite era(42 years of data).  相似文献   

16.
This paper describes atmospheric general circulation model climate change experiments in which the Arctic sea-ice thickness is either fixed to 3 m or somewhat more realistically parameterized in order to take into account essentially the spatial variability of Arctic sea-ice thickness, which is, to a first approximation, a function of ice type (perennial or seasonal). It is shown that, both at present and at the end of the twenty-first century (under the SRES-A1B greenhouse gas scenario), the impact of a variable sea-ice thickness compared to a uniform value is essentially limited to the cold seasons and the lower troposphere. However, because first-year ice is scarce in the Central Arctic today, but not under SRES-A1B conditions at the end of the twenty-first century, and because the impact of a sea-ice thickness reduction can be masked by changes of the open water fraction, the spatial and temporal patterns of the effect of sea-ice thinning on the atmosphere differ between the two periods considered. As a consequence, not only the climate simulated at a given period, but also the simulated Arctic climate change over the twenty-first century is affected by the way sea-ice thickness is prescribed.  相似文献   

17.
Arctic sea ice and Eurasian climate: A review   总被引:12,自引:0,他引:12  
The Arctic plays a fundamental role in the climate system and has shown significant climate change in recent decades,including the Arctic warming and decline of Arctic sea-ice extent and thickness. In contrast to the Arctic warming and reduction of Arctic sea ice, Europe, East Asia and North America have experienced anomalously cold conditions, with record snowfall during recent years. In this paper, we review current understanding of the sea-ice impacts on the Eurasian climate.Paleo, observational and modelling studies are covered to summarize several major themes, including: the variability of Arctic sea ice and its controls; the likely causes and apparent impacts of the Arctic sea-ice decline during the satellite era,as well as past and projected future impacts and trends; the links and feedback mechanisms between the Arctic sea ice and the Arctic Oscillation/North Atlantic Oscillation, the recent Eurasian cooling, winter atmospheric circulation, summer precipitation in East Asia, spring snowfall over Eurasia, East Asian winter monsoon, and midlatitude extreme weather; and the remote climate response(e.g., atmospheric circulation, air temperature) to changes in Arctic sea ice. We conclude with a brief summary and suggestions for future research.  相似文献   

18.
This study examines pre-industrial control simulations from CMIP5 climate models in an effort to better understand the complex relationships between Arctic sea ice and the stratosphere, and between Arctic sea ice and cold winter temperatures over Eurasia. We present normalized regressions of Arctic sea-ice area against several atmospheric variables at extended lead and lag times. Statistically significant regressions are found at leads and lags, suggesting both atmospheric precursors of, and responses to, low sea ice; but generally, the regressions are stronger when the atmosphere leads sea ice, including a weaker polar stratospheric vortex indicated by positive polar cap height anomalies. Significant positive midlatitude eddy heat flux anomalies are also found to precede low sea ice. We argue that low sea ice and raised polar cap height are both a response to this enhanced midlatitude eddy heat flux. The so-called "warm Arctic, cold continents" anomaly pattern is present one to two months before low sea ice, but is absent in the months following low sea ice, suggesting that the Eurasian cooling and low sea ice are driven by similar processes. Lastly, our results suggest a dependence on the geographic region of low sea ice, with low Barents–Kara Sea ice correlated with a weakened polar stratospheric vortex, whilst low Sea of Okhotsk ice is correlated with a strengthened polar vortex. Overall, the results support a notion that the sea ice, polar stratospheric vortex and Eurasian surface temperatures collectively respond to large-scale changes in tropospheric circulation.  相似文献   

19.
It is demonstrated that during the whole annual cycle of ice cover evolution in 2006–2007 in the eastern seas of the Russian Arctic and in the Arctic basin, the factors whose effect led to the formation of an extremely large anomaly of ice conditions in summer 2007 were revealed. By the end of summer, the ice melted on the huge water area of 3500000 km2. In September, the ice edge between the meridians of 150° E-170° W reached the parallel of 85° N. The estimates of the open water area being formed due to the ice melting and its drifting edge shift are given.  相似文献   

20.
中国夏季高温与北极海冰的联系特征   总被引:1,自引:0,他引:1  
方茸  杨修群 《气象》2009,35(3):81-86
为研究前期以及同时期北极海冰异常对中国夏季高温的影响,根据近50年来中国160个台站的夏季高温资料以及近50年来的北极海冰资料,用SVD诊断分析方法,提取出两场相关最强,协方差最大的三个时次--分别为同期、海冰超前夏季高温9个月和超前13个月.分析研究表明:当北极海冰发生异常时,中国夏季高温异常的响应是滞后的,尤其是滞后9个月、13个月时;北极海冰在1978-1979年突然异常减少,且1979年以后维持海冰偏少的态势;当前期或同时期的北极海冰出现异常增多(减少)时,在中国夏季高温场上的响应以"南区"、"北区"夏季高温异常偏低(偏高),与海冰变化反位相;"中区"夏季高温异常偏高(偏低),与海冰变化同位相.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号