首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Galgenbergite-(Ce) from the type locality, the railroad tunnel Galgenberg between Leoben and St. Michael, Styria, Austria, was investigated. There it occurs in small fissures of an albite-chlorite schist as very thin tabular crystals building rosette-shaped aggregates associated with siderite, ancylite-(Ce), pyrite and calcite. Electron microprobe analyses gave CaO 9.49, Ce2O3 28.95, La2O3 11.70, Nd2O3 11.86, Pr2O3 3.48, CO2 30.00, H2O 3.07, total 98.55 wt.%. CO2 and H2O calculated by stoichiometry. The empirical formula (based on Ca + REE ∑3.0) is $ \mathrm{C}{{\mathrm{a}}_{1.00 }}{{\left( {\mathrm{C}{{\mathrm{e}}_{1.04 }}\mathrm{L}{{\mathrm{a}}_{0.42 }}\mathrm{N}{{\mathrm{d}}_{0.42 }}\mathrm{P}{{\mathrm{r}}_{0.12 }}} \right)}_{2.00 }}{{\left( {\mathrm{C}{{\mathrm{O}}_3}} \right)}_4}\cdot {{\mathrm{H}}_2}\mathrm{O} $ , and the simplified formula is $ \mathrm{CaC}{{\mathrm{e}}_2}{{\left( {\mathrm{C}{{\mathrm{O}}_3}} \right)}_4}\cdot {{\mathrm{H}}_2}\mathrm{O} $ . According to X-ray single crystal diffraction galgenbergite-(Ce) is triclinic, space group $ P\overline{1},a=6.3916(5) $ , b?=?6.4005(4), c?=?12.3898(9) Å, α?=?100.884(4), β?=?96.525(4), γ?=?100.492(4)°, V?=?483.64(6) Å3, Z?=?2. The eight strongest lines in the powder X-ray diffraction pattern are [d calc in Å/(I)/hkl]: 5.052/(100)/011; 3.011/(70)/0-22; 3.006/(66)/004; 5.899/(59)/-101; 3.900/(51)/1-12; 3.125/(46)/-201; 2.526/(42)/022; 4.694/(38)/-102. The infrared absorption spectrum reveals H2O (OH-stretching mode at 3,489 cm?1, HOH bending mode at 1,607 cm?1) and indicates the presence of distinctly non-equivalent CO3-groups by double and quadruple peaks of their ν1, ν2, ν3 and ν4 modes. The crystal structure of galgenbergite-(Ce) was refined with X-ray single crystal data to R1?=?0.019 for 2,448 unique reflections (I?>?2σ(I)) and 193 parameters. The three cation sites of the structure Ca(1), Ce(2) and Ce(3) have a modest mixed site occupation by Ca and small amount of REE (Ce, La, Pr, Nd) and vice versa. The structure is based on double layers parallel to (001), which are composed of Ca(1)Ce(2)(CO3)2 single layers with an ordered chessboard like arrangement of Ca and Ce, and with a roof tile-like stacking of the CO3 groups. Perpendicular to (001) the double layers are connected to a triclinic framework structure with good cleavage parallel to (001) by a differently organized and more open part of the structure formed by Ce(3)(CO3)2(H2O). Based on the topology of the CaCe(CO3)2 single layer in galgenbergite-(Ce), structural relationships to rutherfordine, to aragonite and ancylite type minerals, and to lanthanite are outlined.  相似文献   

2.
Albrechtschraufite, MgCa4F2[UO2(CO3)3]2?17-18H2O, triclinic, space group Pī, a?=?13.569(2), b?=?13.419(2), c?=?11.622(2) Å, α?=?115.82(1), β?=?107.61(1), γ?=?92.84(1)° (structural unit cell, not reduced), V?=?1774.6(5) Å3, Z?=?2, D c?=?2.69 g/cm3 (for 17.5 H2O), is a mineral that was found in small amounts with schröckingerite, NaCa3F[UO2(CO3)3](SO4)?10H2O, on a museum specimen of uranium ore from Joachimsthal (Jáchymov), Czech Republic. The mineral forms small grain-like subhedral crystals (≤ 0.2 mm) that resemble in appearance liebigite, Ca2[UO2(CO3)3]??~?11H2O. Colour pale yellow-green, luster vitreous, transparent, pale bluish green fluorescence under ultraviolet light. Optical data: Biaxial negative, nX?=?1.511(2), nY?=?1.550(2), nZ?=?1.566(2), 2?V?=?65(1)° (λ?=?589 nm), r < v weak. After qualitative tests had shown the presence of Ca, U, Mg, CO2 and H2O, the chemical formula was determined by a crystal structure analysis based on X-ray four-circle diffractometer data. The structure was later on refined with data from a CCD diffractometer to R1?=?0.0206 and wR2?=?0.0429 for 9,236 independent observed reflections. The crystal structure contains two independent [UO2(CO3)3]4? anions of which one is bonded to two Mg and six Ca while the second is bonded to only one Mg and three Ca. Magnesium forms a MgF2(Ocarbonate)3(H2O) octahedron that is linked via the F atoms with three Ca atoms so as to provide each F atom with a flat pyramidal coordination by one Mg and two Ca. Calcium is 7- and 8-coordinate forming CaFO6, CaF2O2(H2O)4, CaFO3(H2O)4 and CaO2(H2O)6 coordination polyhedra. The crystal structure is built up from MgCa3F2[UO2(CO3)3]?8H2O layers parallel to (001) which are linked by Ca[UO2(CO3)3]?5H2O moieties into a framework of the composition MgCa4F2[UO2(CO3)3]?13H2O. Five additional water molecules are located in voids of the framework and show large displacement parameters. One of the water positions is partly vacant, leading to a total water content of 17-18H2O per formula unit. The MgCa3F2[UO2(CO3)3]?8H2O layers are pseudosymmetric according to plane group symmetry cmm. The remaining constituents do not sustain this pseudosymmetry and make the entire structure truly triclinic. A characteristic paddle-wheel motif Ca[UO2(CO3)3]4Ca relates the structure of albrechtschraufite partly to that of andersonite and two synthetic alkali calcium uranyl tricarbonates.  相似文献   

3.
Doklady Earth Sciences - Using X-ray analysis, the crystal structure of yegorovite Na4[Si4O8(OH)4] · 7H2O, a newly-discovered mineral from the Lovozero alkaline complex (Kola Peninsula,...  相似文献   

4.
A series of fluoride perovskites related to neighborite was investigated using X-ray and neutron diffraction techniques, and Rietveld profile refinement of powder diffraction data. The series (Na1? x K x )MgF3 comprises orthorhombic (Pbnm, a?≈? , b?≈? , c?≈?2a p , Z=4) perovskites in the compositional range 0?≤?x?≤?0.30, tetragonal perovkites (P4/mbm, a?≈? , c?≈?a p , Z=2) in the range 0.40?≤?x?≤?0.46, and cubic phases (Pmm, Z=1) for x?>?0.50. The structure of the orthorhombic neighborite is derived from the perovskite aristotype by rotation of MgF6 octahedra about the [110] and [001] axes of the cubic subcell. The degree of rotation, measured as a composite tilt Φ about the triad axis, varies from 18.2° at x=0 to 11.2° at x=0.30 (as determined from the fractional atomic coordinates). Orthorhombic neighborite also shows a significant displacement of Na and K from the “ideal” position (≤0.25?Å). The tetragonal members of the neighborite series exhibit only in-phase tilting about the [001] axis of the cubic subcell (φ) ranging from 4.5° to 4.8° (determined from the atomic coordinates). The solid solution (Na1? x K x )MgF3, shows a regular variation of unit-cell dimensions with composition from 3.8347?Å for the end-member NaMgF3 (reduced to pseudocubic subcell, a p ) to 3.9897?Å for KMgF3. This variation is accompanied by increasing volumes of the A-site polyhedra, whereas the volume of MgF6 octahedra initially decreases (up to x=0.40), and then increases concomitantly with K content. The polyhedral volume ratio, V A /V B , gradually increases towards the tetragonal structural range, in agreement with diminishing octahedral rotation in the structure. The P4/mbm-type neighborite has an “anomalous” polyhedral volume ratio (ca. 5.04) owing to the critical compression of MgF6 polyhedra.  相似文献   

5.
Summary Phosphates of compositions (Na1–xLix)1.5Mn1.5Fe1.5(PO4)3 were synthesized by solid state reactions in air, and pure alluaudite-type compounds were obtained for x=0.00, 0.25, and 0.50. Rietveld refinements of X-ray powder diffraction data indicate the occurrence of Mn2+ in the M(1) site, and of Fe3+ and Mn2+ in the M(2) site. For x=0.25 and 0.50, A(1) is occupied by Li+ and Na+, whereas A(2) is occupied by Na+ and vacancies. A careful examination of the number of electrons occurring in the A sites of the alluaudite-type compounds (Na1–xLix)MnFe2(PO4)3 and (Na1–xLix) CdIn2(PO4)3 confirms that lithium occupies only the A(1) crystallographic site of the alluaudite structure.  相似文献   

6.
Mineralogy and Petrology - Monohydrocalcite, CaCO3·H2O, forms a P31 structure composed of composite rods in which a spiral arrangement of Ca ions is accompanied by spiral arrangements of CO3...  相似文献   

7.
The synthesis boundaries of the phase transformation; ++ in (Mg0.9, Fe0.1)SiO4, have been clarified at temperatures to 2000° C and pressures up to 20 GPa in order to synthesize single crystals of high quality. A single crystal of (Mg0.9, Fe0.1)2SiO4 was grown successfully to a size of 500 m. The crystal structure has been refined from single-crystal X-ray intensities. The ferrous ions prefer M1 and M3 sites to over the larger M2 site. The volume change of all the occupied polyhedra does not contribute to the decrease of total volume in the transformation; rather it tends to increase the bulk volume through the expansion of occupied tetrahedra. The volume reduction in the phase transformations is accounted for by unoccupied polyhedra, with the octahedra contributory 60% and the tetrahedra 40% to the V of the transition. The volume change in the transformation is caused also partly by the volume decrease of MO 6 (25%), partly the unoccupied tetrahedra (45%) and octahedra (30%).  相似文献   

8.
The behaviour of two types of limestones having a different porosity, Maastricht and Euville limestone, laden with aqueous solutions of equimolar mixtures of sodium sulphate/sodium nitrate or sodium sulphate/potassium sulphate was investigated. At 50 % RH, the efflorescences on Maastricht samples during the first 30 h of drying consisted of similar amounts of thenardite and darapskite in case of an equimolar mixture of sodium sulphate/sodium nitrate while those on Euville samples under the same conditions contained mainly darapskite. After drying at 20 °C and 85 % RH, thenardite, formed through the precipitation and dehydration of mirabilite, was mostly detected in the efflorescences on both Maastricht and Euville samples. Re-wetting by increasing the RH from 50 to 85 % resulted in substantial damage on Maastricht stone laden with an equimolar mixture of sodium sulphate/sodium nitrate as a consequence of high supersaturation of mirabilite. In case of a contamination with equimolar amounts of sodium sulphate and potassium sulphate, the efflorescence on both limestones during drying at 50 % RH contained predominantly aphthitalite. The observed crystallisation behaviour is compared to the theoretical behaviour. The results indicate a strong influence of stone properties on the crystallisation behaviour of salt mixtures.  相似文献   

9.
Gold–silver sulfoselenides of Ag3Au(Se,S)2 series—Ag3AuSe1.5S0.5, Ag3AuSeS, and Ag3AuSe0.5S1.5—have been synthesized by fusing the elements in the required stoichiometric amounts in evacuated quartz ampoules. The single crystal X-ray diffraction data indicate the existence of two solid-solution series: petzite-type cubic Ag3AuSe2—Ag3AuSeS (space group I4132) and trigonal Ag3AuSe0.5S1.5—Ag3AuS2 (space group $ R\overline{3} c $ ). Both crystal structures differ in the distribution of Ag+/Au+ cations in the same distorted body-centered cubic sublattice of chalcogen anions. The morphotropic transformation results from the shrinkage of anion packing accompanied by the shortening of Ag–Ag distances. The structure of uytenbogaardtite mineral, earlier incorrectly interpreted as a tetragonal or cubic cell, is similar to that of the trigonal Ag3AuS2 end-member.  相似文献   

10.
Mineralogy and Petrology - The crystal structure of goldichite KFe(SO4)2⋅4H2O was determined on a single crystal from the Baiyinchang copper deposit, Gansu, China. [P121/c1, a = 10.395(2), b...  相似文献   

11.
12.
Summary The highest (Nb, Ta) content ever encountered in titanite is reported from the Maríkov 11 pegmatite in northern Moravia, Czech Republic. This dike is a member of a pegmatite swarm of the beryl-columbite subtype, metamorphosed under conditions of the amphibolite facies. The pegmatite carries, i.a., rare tantalian rutile intergrown with titanian ixiolite, titanian columbite-tantalite, fersmite and microlite. Fissures generated in the Nb, Ta oxide minerals during deformation are filled with titanite, formed by reaction of the oxide minerals with metamorphic pore fluids. The titanite displays limited degrees of substitutions Na(Ta > Nb)(CaTi)–1, (Ta > Nb)4Ti–4Si–1 and AI(OH, F)(TiO)–1, but an extensive (and occasionally the sole significant) substitution (Al > Fe3+)(Ta > Nb)Ti–2, responsible for widespread oscillatory zoning. This substitution reduces the proportion of the titanite componentsensu stricto, CaTiSiO4,O, to less than 50 mole % in many analyzed spots. The extreme composition corresponds to (Ca0.994Na0.011)(Ti0.436Sn0.007Al0.280Fe3+ 0.006Ta0.199Nb0.079)Si0.988O4(O0.974F0.026). However, so far this substitution fails to generate compositions that would define a new species.
Zusammenfassung Die AI(Nb, Ta)Ti–2 Substitution im Titanit: Auftauchen einer neuen Mineralspecies? Die höchsten (Nb, Ta) Gehalte, die jemals für Titanit gefunden wurden, werden für den Maríkov II Pegmatit in Nordmähren, Tschechei, berichtet. Der Intrusivgang ist Teil eines Amphibolit-faziell überprägten Pegmatitschwarms vom Beryll-Columbit Subtypus Der Pegmatit führt u.a. seltene tantalbetonte Rutile verwachsen mit titanbetontem Ixiolith, titanbetontem Columbit-Tantalit, Fersmit and Mikrolith. Deformationsbedingte Frakturen in den (Nb, Ta) Oxiden sind mit Titanit, als Folge der Reaktion der metamorphen Porenlösungen mit den Oxidmineralen, verkittet. Titanit zeigt begrenzte Substitutionen Na(Ta > Nb)(CaTi)–1,(Ta > Nb)4Ti–4Si–1 and Al(OH, F)(TiO)–1, aber extensive (und gelegentlich einzig bedeutsame) Substitution (Al >> Fe3+)(Ta > Nb)Ti–2, die eine weitverbreitete, oszillierende Zonierung hervorruft. Diese Substitution verringert den Anteil der Titanit-Komponentesensu stricto, CaTiSiO,O, auf weniger als 50 Mol% in vielen Analysen. Die Extremzusammensetzung entspricht Ca0.994Na0.11) (T10.436Sn0.007Al0.280Fe3+ 0.006Ta0.199Nb0.079)Si0.988O4(O0.974F0.026). Das AusmaB dieser Substitution ist unzureichend, um eine neue Mineralspecies zu definieren.
  相似文献   

13.
Mineralogy and Petrology - Batagayite, CaZn2(Zn,Cu)6(PO4)4(PO3OH)3·12H2O, is a new secondary phosphate mineral from the Këster deposit, Arga-Ynnykh-Khai massif, NE Yakutia, Russia. It is...  相似文献   

14.
We have collected high-resolution neutron powder diffraction patterns from MgSO4·11D2O over the temperature range 4.2–250 K. The crystal is triclinic, space-group \( \text{P} \bar{1} \) (Z = 2) with a = 6.72746(6) Å, b = 6.78141(6) Å, c = 17.31803(13) Å, α = 88.2062(6)°, β = 89.4473(8)°, γ = 62.6075(5)°, and V = 701.140(6) Å3 at 4.2 K, and a = 6.75081(3) Å, b = 6.81463(3) Å, c = 17.29241(6) Å, α = 88.1183(3)°, β = 89.4808(3)°, γ = 62.6891(3)°, and V = 706.450(3) Å3 at 250 K. Structures were refined to wRp = 3.99 and 2.84% at 4.2 and 250 K, respectively. The temperature dependence of the lattice parameters over the intervening range have been fitted with a modified Einstein oscillator model which was used to obtain the coefficients of the thermal expansion tensor. The volume thermal expansion, αV, is considerably smaller than ice Ih at all temperatures, and smaller even than MgSO4·7D2O (although ?αV/?T is very similar for both sulfates); MgSO4·11D2O exhibits negative αV below 55 K (compared to 70 K in D2O ice Ih and 20 K in MgSO4·7D2O) The relationship between the magnitude and orientation of the principal axes of the expansion tensor and the main structural elements are discussed.  相似文献   

15.
16.
《Geochimica et cosmochimica acta》1999,63(13-14):1969-1980
The solubility of ettringite (Ca6[Al(OH)6]2(SO4)3 · 26H2O) was measured in a series of dissolution and precipitation experiments at 5–75°C and at pH between 10.5 and 13.0 using synthesized material. Equilibrium was established within 4 to 6 days, with samples collected between 10 and 36 days. The log KSP for the reaction Ca6[Al(OH)6]2(SO4)3 · 26H2O ⇌ 6Ca2+ + 2Al(OH)4 + 3SO42− + 4OH + 26H2O at 25°C calculated for dissolution experiments (−45.0 ± 0.2) is not significantly different from the log KSP calculated for precipitation experiments (−44.8 ± 0.4) at the 95% confidence level. There is no apparent trend in log KSP with pH and the mean log KSP,298 is −44.9 ± 0.3. The solubility product decreased linearly with the inverse of temperature indicating a constant enthalpy of reaction from 5 to 75°C. The enthalpy and entropy of reaction ΔH°r and ΔS°r, were determined from the linear regression to be 204.6 ± 0.6 kJ mol−1 and 170 ± 38 J mol−1 K−1. Using our values for log KSP, ΔH°r, and ΔS°r and published partial molal quantities for the constituent ions, we calculated the free energy of formation ΔG°f,298, the enthalpy of formation ΔH°f,298, and the entropy of formation ΔS°f,298 to be −15211 ± 20, −17550 ± 16 kJ mol−1, and 1867 ± 59 J mol−1 K−1. Assuming ΔCP,r is zero, the heat capacity of ettringite is 590 ± 140 J mol−1 K−1.  相似文献   

17.
18.
19.
20.
The configurational heat capacity, shear modulus and shear viscosity of a series of Na2O–Fe2O3–Al2O3–SiO2 melts have been determined as a function of composition. A change in composition dependence of each of the physical properties is observed as Na2O/(Na2O + Al2O3) is decreased, and the peralkaline melts become peraluminous and a new charge-balanced Al-structure appears in the melts. Of special interest are the frequency dependent (1 mHz–1 Hz) measurements of the shear modulus. These forced oscillation measurements determine the lifetimes of Si–O bonds and Na–O bonds in the melt. The lifetime of the Al–O bonds could not, however, be resolved from the mechanical spectrum. Therefore, it appears that the lifetime of Al–O bonds in these melts is similar to that of Si–O bonds with the Al–O relaxation peak being subsumed by the Si–O relaxation peak. The appearance of a new Al-structure in the peraluminous melts also cannot be resolved from the mechanical spectra, although a change in elastic shear modulus is determined as a function of composition. The structural shear-relaxation time of some of these melts is not that which is predicted by the Maxwell equation, but up to 1.5 orders of magnitude faster. Although the configurational heat capacity, density and shear modulus of the melts show a change in trend as a function of composition at the boundary between peralkaline and peraluminous, the deviation in relaxation time from the Maxwell equation occurs in the peralkaline regime. The measured relaxation times for both the very peralkaline melts and the peraluminous melts are identical with the calculated Maxwell relaxation time. As the Maxwell equation was created to describe the timescale of flow of a mono-structure material, a deviation from the prediction would indicate that the structure of the melt is too complex to be described by this simple flow equation. One possibility is that Al-rich channels form and then disappear with decreasing Si/Al, and that the flow is dominated by the lifetime of Si–O bonds in the Al-poor peralkaline melts, and by the lifetime of Al–O bonds in the relatively Si-poor peralkaline and peraluminous melts with a complex flow mechanism occurring in the mid-compositions. This anomalous deviation from the calculated relaxation time appears to be independent of the change in structure expected to occur at the peralkaline/peraluminous boundary due to the lack of charge-balancing cations for the Al-tetrahedra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号