首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
海浪对北太平洋海-气二氧化碳通量的影响   总被引:1,自引:0,他引:1  
利用4种海-气界面气体传输速率公式对比研究了北太平洋气体传输速率及其CO2通量的季节变化特征。与单纯依赖风速的算法相比, 考虑波浪影响的气体传输速率和CO2通量在空间分布和季节变化上具有明显差异。在低纬度地区(0°~30°N), 波浪参数使气体传输速率下降, 海洋对大气CO2的吸收减少, 而在30°N以北范围内则出现新的气体传输速率高值区, 海洋对大气的吸收增加。进一步研究了黑潮延伸体区域的气候态月平均气体传输速率和CO2通量。结果表明, 该区域气体传输速率和CO2通量最大值分别出现于冬季和春季, 引入波浪参数后, 虽然该区域气体传输速率和CO2通量平均值没有明显差异, 但季节变化强度显著增强。  相似文献   

2.
Nitrous oxide (N2O) is a trace gas that is increasing in the atmosphere. It contributes to the greenhouse effect and influences the global ozone distribution. Recent reports suggest that regions such as the Arabian Sea may be significant sources of atmospheric N2O.In the ocean, N2O is formed as a by-product of nitrification and as an intermediary of denitrification. In the latter process, N2O can be further reduced to N2. These processes, which operate on different source pools and have different magnitudes of isotopic fractionation, make separate contributions to the 15N and18O isotopic composition of N2O. In the case of nitrification in oxic waters, the isotopic composition of N2O appears to depend mainly on the 15N/14N ratio of NH+4 and the 18O/16O ratio of O2 and H2O. In suboxic waters, denitrification causes progressive 15N and 18O enrichment of N2O as a function of degree of depletion of nitrate and dissolved oxygen. Thus the isotopic signature of N2O should be a useful tool for studying the sources and sinks for N2O in the ocean and its impact on the atmosphere.We have made observations of N2O concentrations and of the dual stable isotopic composition of N2O in the eastern tropical North Pacific (ETNP) and the Arabian Sea. The stable isotopic composition of N2O was determined by a new method that required only 80–100 nmol of N2O per sample analysis. Our observations include determinations across the oxic/suboxic boundaries that occur in the water columns of the ETNP and Arabian Sea. In these suboxic waters, the values of δ15N and δ18O increased linearly with one another and with decreasing N2O concentrations, presumably reflecting the effects of denitrification. Our results suggest that the ocean could be an important source of isotopically enriched N2O to the atmosphere.  相似文献   

3.
In the present study, we report N_2 fixation rate(~(15)N isotope tracer assay) and the diazotroph community structure(using the molecular method) in the western tropical North Pacific Ocean(WTNP)(13°–20°N, 120°–160°E). Our independent evidence on the basis of both in situ N_2 fixation activity and diazotroph community structure showed the dominance of unicellular N_2 fixation over majority of the WTNP surface waters during the sampling periods.Moreover, a shift in the diazotrophic composition from unicellular cyanobacteria group B-dominated to Trichodesmium spp.-dominated toward the western boundary current(Kuroshio) was also observed in 2013. We hypothesize that nutrient availability may have played a major role in regulating the biogeography of N_2 fixation.In surface waters, volumetric N_2 fixation rate(calculated by nitrogen) ranged between 0.6 and 2.6 nmol/(L·d) and averaged(1.2±0.5) nmol/(L·d), with 10 μm size fraction contributed predominantly(88%±6%) to the total rate between 135°E and 160°E. Depth-integrated N_2 fixation rate over the upper 200 m ranged between 150 μmol/(m~2·d)and 480 μmol/(m~2·d)(average(225±105) μmol/(m~2·d). N_2 fixation can account for 6.2%±3.7% of the depthintegrated primary production, suggesting that N_2 fixation is a significant N source sustaining new and export production in the WTNP. The role of N_2 fixation in biogeochemical cycling in this climate change-vulnerable region calls for further investigations.  相似文献   

4.
During CREAMS expeditions, fCO2 for surface waters was measured continuously along the cruise tracks. The fCO2 in surface waters in summer varied in the range 320–440 μatm, showing moderate supersaturation with respect to atmospheric CO2. In winter, however, fCO2 showed under-saturation of CO2 in most of the area, while varying in a much wider range from 180 to 520 μatm. Some very high fCO2 values observed in the northern East Sea (Japan Sea) appeared to be associated with the intensive convection system developed in the area. A gas-exchange model was developed for describing the annual variation of fCO2 and for estimating the annual flux of CO2 at the air-sea interface. The model incorporated annual variations in SST, the thickness of the mixed layer, gas exchange associated with wind velocity, biological activity and atmospheric concentration of CO2. The model shows that the East Sea releases CO2 into the atmosphere from June to September, and absorbs CO2 during the rest of the year, from October through May. The net annual CO2 flux at the air-sea interface was estimated to be 0.032 (±0.012) Gt-C per year from the atmosphere into the East Sea. Water column chemistry shows penetration of CO2 into the whole water column, supporting a short turnover time for deep waters in the East Sea. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
利用2008年大洋环球航次,研究了热带、亚热带太平洋和南印度洋中束毛藻丰度的大尺度分布特征,结果表明:在亚热带西北太平洋和热带东南亚海域束毛藻藻丝平均丰度较高,分别为25.2×103和33.3×103m-3,在热带中太平洋、热带东太平洋和南印度洋束毛藻平均丰度较低,分别为1.76×103,0.87×103和1.52×103m-3。各海区束毛藻丰度与水温无明显相关关系。总叶绿素a的分布特征与束毛藻不同,在太平洋呈西低、东高,在热带东南亚海域较高而在南印度洋较低,从总叶绿素a的粒级结构看,微微型浮游植物(0.2~2μm)所占比重最高,其次是微型浮游植物(2~20μm),小型浮游植物(20μm)所占比重最低。各海区束毛藻对总叶绿素a贡献的比例不同,在亚热带西北太平洋和热带东南亚海域较高,分别占总叶绿素a的7.79%和3.92%,在热带中太平洋、热带东太平洋和南印度洋占总叶绿素a的比例较低,均低于1%。在亚热带西北太平洋束毛藻固氮占真光层总新氮输入量的比例较高,这是该海域新氮的重要来源之一,而在热带中太平洋和热带东太平洋束毛藻固氮对真光层新氮的贡献比例则很低。  相似文献   

6.
A singular value decomposition (SVD) analysis is carried out to reveal the relationship between the interannual variation of track and intensity of the western North Pacific tropical cyclones (WNPTCs) in the tropical cyclone (TC) active season (July-November) and the global net air-sea heat flux (Q net ) in the preceding season (April-June). For this purpose, a tropical cyclone track and intensity function (TIF) is defined by a combination of accumulated cyclone energy (ACE) index and a cyclone track densit...  相似文献   

7.
A global ocean inverse model that includes the 3D ocean circulation as well as the production, sinking and remineralization of biogenic particulate matter is used to estimate the carbon export flux in the Pacific, north of 10°S. The model exploits the existing large datasets for hydrographic parameters, dissolved oxygen, nutrients and carbon, and determines optimal export production rates by fitting the model to the observed water column distributions by means of the “adjoint method”. In the model, the observations can be explained satisfactorily with an integrated carbon export production of about 3 Gt C yr−1 (equivalent to 3⋅1015 gC yr−1) for the considered zone of the Pacific Ocean. This amounts to about a third of the global ocean carbon export of 9.6 Gt C yr−1 in the model. The highest export fluxes occur in the coastal upwelling region off northwestern America and in the tropical eastern Pacific. Due to the large surface area, the open-ocean, oligotrophic region in the central North Pacific also contributes significantly to the total North Pacific export flux (0.45 Gt C yr−1), despite the rather small average flux densities in this region (13 gC m−2yr−1). Model e-ratios (calculated here as ratios of model export production to primary production, as inferred from satellite observations) range from as high a value as 0.4 in the tropical Pacific to 0.17 in the oligotrophic central north Pacific. Model e-ratios in the northeastern Pacific upwelling regions amount to about 0.3 and are lower than previous estimates. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
The first CO2 exposure experiments on several species of pelagic copepods inhabiting surface and deep layers in the western North Pacific were conducted. Living organisms were collected from two layers between the surface and 1,500 m between latitudes of 11 and 44°N, and they were exposed aboard ship to various pCO2 up to about 98,000 μatm. Mortality of copepods from both shallow and deep layers in subarctic to subtropical regions increased with increasing pCO2 and exposure time. Deep-living copepods showed higher tolerance to pCO2 than shallow-living copepods. Furthermore, deep-living copepods from subarctic and transitional regions had higher tolerances than the subtropical copepods. The higher tolerances of the deep-living copepods from subarctic and transitional regions may be due to the adaptation to the natural pCO2 conditions in the subarctic ocean.  相似文献   

9.
Chlorophyll a concentrations of net (retained on 30 m mesh net) and total plankton in surface waters were determined along cruise tracks in an area of the northern North Pacific Ocean and the adjacent Bering Sea and the Gulf of Alaska from summer to autumn. Total chlorophyll a concentrations were high with a great areal and temporal variations in the western northern North Pacific compared to the eastern part. Chlorophyll a concentrations of netplankton varied from 0.001 to 0.230 g chl a l–1 (average, 0.029 ± 0.040 g chl a l–1), and showed a positive relation but a weak regression coefficient (r 2 = 0.551) against the "average total chlorophyll a" (average of total chlorophyll a at the beginning and at the end during sampling of netplankton). However there were several data points showing high "average total chlorophyll a" but low netplankton and vice versa. Average percentage share of netplankton in the total chlorophyll a was estimated to be as large as 4.26%.  相似文献   

10.
Dimethylsulfide (DMS), chlorophyll a (Chl-a), accessory pigments (fucoxanthin, peridinin and 19-hexanoyloxyfucoxanthin), and bacterial production (BP) were measured in the surface layer (0–100 m) of the subarctic North Pacific, including the Bering Sea, during summer (14 July–5 September, 1997). In surface sewater, the concentrations of DMS and Chl-a varied widely from 1.3 to 13.2 nM (5.1 ± 3.0 nM, mean ± S.D., n = 48) and from 0.1 to 2.4 µg L–1 (0.6 ± 0.6 µg L–1, n = 24), respectively. In the subarctic North Pacific, DMS to Chl-a ratios (DMS/Chl-a) were higher on the eastern side than the western side (p < 0.0001). Below the euphotic zone, DMS/Chl-a ratios were law and the correlation between DMS and Chl-a was relatively strong (r 2 = 0.700, n = 27, p < 0.0001). In the euphotic zone, DMS/Chl-a ratios were higher and the correlation between DMS and Chl-a was weak (r 2 = 0.128, n = 50, p = 0.01). The wide variation in DMS/Chl-a ratios would be at least partially explained by the geographic variation in the taxonomic composition of phytoplankton, because of the negative correlation between DMS/Chl-a and fucoxanthin-to-Chl-a ratios (Fuc/Chl-a) (r 2 = 0.476, n = 26, p = 0.0001). Furthermore, there was a positive correlation between DMS and BP (r 2 = 0.380, n = 19, p = 0.005). This suggests that BP did not represent DMS and dimethylsulfoniopropionate (DMSP) removal by bacterial consumption but rather DMSP degradation to DMS by bacterial enzyme.  相似文献   

11.
N2 fixation is an important biological process that adds new nitrogen to oceans and plays a key role in modulating the oceanic nitrate inventory. However, it is not known how, when, and where N2 fixation rates have varied in response to past climate changes. This study presents a new record of nitrogen isotopic composition (δ15N) over the last 83 kyr from a sediment core (KH02-4 SUP8) taken in the Sulu Sea in the western equatorial Pacific region; data allow the N2 fixation variability in the sea to be reconstructed. Sediments, sinking, and suspended particulate organic matter (POM) all have lighter isotopic values compared to the δ15N values of substrate nitrate (av. 5.8‰) in North Pacific Intermediate Water. These lighter δ15N values are regarded as reflecting N2 fixation in the Sulu Sea surface water. A δ15N mass balance model shows that N2 fixation rates were significantly enhanced during 54–34 kyr in MIS-3 and MIS-2. It has been speculated that higher interglacial denitrification rates in the Arabian Sea and the eastern tropical Pacific would have markedly decreased the global oceanic N inventory and contributed to the increase in N2 fixation in oligotrophic regions, but such a model was not revealed by our study. It is possible that changes in N2 fixation rates in the Sulu Sea were regional response, and accumulation of phosphate in the surface waters due to enhanced monsoon-driven mixing is thought to have stimulated enhancements of N2 fixation during MIS-3 and MIS-2.  相似文献   

12.
The 3rd Chinese National Arctic Research Expedition(CHINARE–Arctic III) was carried out from July to September in 2008. The partial pressure of CO2(pCO2) in the atmosphere and in surface seawater were determined in the Bering Sea during July 11–27, 2008, and a large number of seawater samples were taken for total alkalinity(TA) and total dissolved inorganic carbon(DIC) analysis. The distributions of CO2 parameters in the Bering Sea and their controlling factors were discussed. The pCO2 values in surface seawater presented a drastic variation from 148 to 563 μatm(1 μatm = 1.013 25×10-1 Pa). The lowest pCO2 values were observed near the Bering Sea shelf break while the highest pCO2 existed at the western Bering Strait. The Bering Sea generally acts as a net sink for atmospheric CO2 in summer. The air-sea CO2 fluxes in the Bering Sea shelf, slope, and basin were estimated at-9.4,-16.3, and-5.1 mmol/(m2·d), respectively. The annual uptake of CO2 was about 34 Tg C in the Bering Sea.  相似文献   

13.
白令海BR断面海-气CO2通量及其参数特征   总被引:1,自引:0,他引:1  
通过对2008年夏季白令海大气和海水pCO2连续观测资料,结合BR断面上站位水体垂直采样测量,对白令海不同海区pCO2的分布特征及其与理化参数的关系进行了初步研究,结果表明,将白令海划分为4个具有不同CO2吸收能力的海区,其中陆坡流区碳通量高达-18.72 mmol/(m2·d),是海盆北区的近2倍,比海盆南区高一个量...  相似文献   

14.
We conducted full-depth hydrographic observations in the southwestern region of the Northwest Pacific Basin in September 2004 and November 2005. Deep-circulation currents crossed the observation line between the East Mariana Ridge and the Shatsky Rise, carrying Lower Circumpolar Deep Water westward in the lower deep layer (θ<1.2 °C) and Upper Circumpolar Deep Water (UCDW) and North Pacific Deep Water (NPDW) eastward in the upper deep layer (1.3–2.2 °C). In the lower deep layer at depths greater than approximately 3500 m, the eastern branch current of the deep circulation was located south of the Shatsky Rise at 30°24′–30°59′N with volume transport of 3.9 Sv (1 Sv=106 m3 s−1) in 2004 and at 30°06′–31°15′N with 1.6 Sv in 2005. The western branch current of the deep circulation was located north of the Ogasawara Plateau at 26°27′–27°03′N with almost 2.1 Sv in 2004 and at 26°27′–26°45′N with 2.7 Sv in 2005. Integrating past and present results, volume transport southwest of the Shatsky Rise is concluded to be a little less than 4 Sv for the eastern branch current and a little more than 2 Sv for the western branch current. In the upper deep layer at depths of approximately 2000–3500 m, UCDW and NPDW, characterized by high and low dissolved oxygen, respectively, were carried eastward at the observation line by the return flow of the deep circulation composing meridional overturning circulation. UCDW was confined between the East Mariana Ridge and the Ogasawara Plateau (22°03′–25°33′N) in 2004, whereas it extended to 26°45′N north of the Ogasawara Plateau in 2005. NPDW existed over the foot and slope of the Shatsky Rise from 29°48′N in 2004 and 30°06′N in 2005 to at least 32°30′N at the top of the Shatsky Rise. Volume transport of UCDW was estimated to be 4.6 Sv in 2004, whereas that of NPDW was 1.4 Sv in 2004 and 2.6 Sv in 2005, although the values for NPDW may be slightly underestimated, because they do not include the component north of the top of the Shatsky Rise. Volume transport of UCDW and NPDW southwest of the Shatsky Rise is concluded to be approximately 5 and 3 Sv, respectively. The pathways of UCDW and NPDW are new findings and suggest a correction for the past view of the deep circulation in the Pacific Ocean.  相似文献   

15.
We survey the recent progress in studies of North Pacific Intermediate Water (NPIW) in SAGE (SubArctic Gyre Experiment), including important results obtained from related projects. Intensive observations have provided the transport distributions relating to NPIW and revealed the existence of the cross-wind-driven gyre Oyashio water transport that flows directly from the subarctic to subtropical gyres through the western boundary current as well as the diffusive contribution across the subarctic front. The anthropogenic CO2 transport into NPIW has been estimated. The northern part of NPIW in the Transition Domain east of Japan is transported to the Gulf of Alaska, feeding the mesothermal (intermediate temperature maximum) structure in the North Pacific subarctic region where deep convection is restricted by the strong halocline maintained by the warm and salty water transport originating from NPIW. This heat and salt transport is mostly balanced by the cooling and freshening in the formation of dense shelf water accompanied by sea-ice formation and convection in the Okhotsk Sea. Intensive observational and modeling studies have substantially altered our view of the intermediate-depth circulation in the North Pacific. NPIW circulations are related to diapycnal-meridional overturning, generated around the Okhotsk Sea due to tide-induced diapycnal mixing and dense shelf water formation accompanied by sea-ice formation in the Okhotsk Sea. This overturning circulation may possibly explain the direct cross-gyre transport through the Oyashio along the western boundary from the subarctic to subtropical gyres. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
More than 14,000 measurements of surface water xCO2 were obtained during two cruises, 3 weeks apart in June 2000, along 155°E between 34 and 44°N in the western North Pacific Ocean. Based on the distributions of salinity and sea surface temperature (SST), the region has been divided into 6 subregions; Oyashio, Oyashio front, Transition, Kuroshio front, and Kuroshio extension I and II zones, from north to south. The surface waters were always undersaturated with respect to atmospheric CO2. The Oyashio water was the least undersaturated: its xCO2 decreased slightly by 7 ppm, while SST increased by 2°C. The xCO2 normalized to a constant temperature decreased considerably. In the two frontal zones, a large drawdown of 30–40 ppm was observed after 18–19 days. In the Kuroshio extension zones, the xCO2 increased, but the normalized xCO2 decreased considerably. The Transition zone water may be somewhat affected by mixing with the subsurface water, as indicated by the smallest SST rise, an undecreased PO4 concentration, and a colder and less stable surface layer than the Oyashio front water. As the uncertainty derived from the air-sea CO2 flux was not large, the xCO2 data allowed us to calculate the net biological productivity. The productivities around 60 mmol C m−2d−1 outside the Transition zone indicate that the northwestern North Pacific, especially the two frontal zones, can be regarded as one of the most productive oceans in the world.  相似文献   

17.
Distributions and characteristics of water mass and chlorofluorocarbons (CFCs) in the North Pacific are investigated by using a General Circulation Model (GCM). The anthropogenic CO2 uptake by the ocean is estimated with velocity fields derived from the GCM experiments. The sensitivity of the uptake to different diffusion parameterizations and different surface forcing used in the GCM is investigated by conducting the three GCM experiments; the diffusive processes are parameterized by horizontal and vertical eddy diffusion which is used in many previous models (RUN1), parameterized by isopycnal diffusion (RUN2), and isopycnal diffusion and perpetual winter forcing for surface temperature and salinity (RUN3). Realistic features for water masses and CFCs can be simulated by the isopycnal diffusion models. The horizontal and vertical diffusion model fails to simulate the salinity minimum and realistic penetration of CFCs into the ocean. The depth of the salinity minimum layer is better simulated under the winter forcing. The results suggest that both isopycnal parameterization and winter forcing are crucial for the model water masses and CFCs simulations. The oceanic uptake of anthropogenic CO2 in RUN3 is about 19.8 GtC in 1990, which is larger by about 10% than that in RUN1 with horizontal and vertical diffusive parameterization. RUN3 well simulates the realistic water mass structure of the intermediate layer considered as a candidate of oceanic sink for anthropogenic CO2. The results suggest that the previous models with horizontal and vertical diffusive parameterization may give the oceanic uptake of anthropogenic CO2 underestimated. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
The subarctic North Pacific is a high nitrate-low chlorophyll (HNLC) region, where phytoplankton growth rates, especially those of diatoms, are enhanced when micronutrient Fe is added. Accordingly, it has been suggested that glacial Fe-laden dust might have increased primary production in this region. This paper reviews published palaeoceanographic records of export production over the last 800 kyrs from the open North Pacific (north of ∼35°N). We find different patterns of export production change over time in the various domains of the North Pacific (NW and NE subarctic gyres, the marginal seas and the transition zone). However, there is no compelling evidence for an overall increase in productivity during glacials in the subarctic region, challenging the paradigm that dust-born Fe fertilization of this region has contributed to the glacial draw down of atmospheric CO2. Potential reasons for the lack of increased glacial export production include the possibility that Fe-fertilization rapidly drives the ecosystem towards limitation by another nutrient. This effect would have been exacerbated by an even more stable mixed layer compared to today. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Excess CO2 and pHexcess showing an increase in dissolved inorganic carbon and a decrease in pH from the beginning of the industrial epoch (middle of the 19th century) until the present time have been calculated in the intermediate water layer of the northwestern Pacific and the Okhotsk Sea. It is concluded that: (1) The Kuril Basin (Okhotsk Sea) and the Bussol' Strait areas are characterized by the greatest concentrations of excess CO2 at isopycnal surfaces due to the processes of formation and transformation of intermediate water mass. (2) The largest difference in excess CO2 concentration between the Okhotsk Sea and the western subarctic Pacific (about 8 µmol/kg) is found at the = 27.0. (3) The difference in excess CO2 between the western subarctic Pacific and subtropical regions is significant only in the upper part of the intermediate water layer ( = 26.7–27.0). (4) About 10% of the excess CO2 accumulation in the subtropical north Pacific is determined by water exchange with the subarctic Pacific and the Okhotsk Sea.  相似文献   

20.
彭鹏飞  马媛  史荣君  王迪  许欣  颜彬 《海洋科学》2022,46(10):140-149
根据2018年7月、11月和2019年1月、4月对广东考洲洋牡蛎养殖海域进行4个季节调查获得的p H、溶解无机碳(DIC)、水温、盐度、溶解氧(DO)及叶绿素a(Chla)等数据,估算该区域表层海水溶解无机碳体系各分量的浓度、初级生产力(PP)、表层海水CO2分压[p(CO2)]和海-气界面CO2交换通量(FCO2),分析牡蛎养殖活动对养殖区碳循环的影响。结果表明:牡蛎养殖区表层海水中Chl a、DIC、HCO3和PP显著低于非养殖区;养殖淡季表层海水中pH、DO、DIC、HCO3、和CO32–显著大于养殖旺季,养殖旺季的p(CO2)和FCO2显著大于养殖淡季。牡蛎养殖区表层海水夏季、秋季、冬季和春季的海-气界面CO2交换通量FCO2平均值分别是(42.04±9.56)、(276...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号