首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
We use cosmological Λ cold dark matter (CDM) numerical simulations to model the evolution of the substructure population in 16 dark matter haloes with resolutions of up to seven million particles within the virial radius. The combined substructure circular velocity distribution function (VDF) for hosts of 1011 to  1014 M  at redshifts from zero to two or higher has a self-similar shape, is independent of host halo mass and redshift, and follows the relation  d n /d v = (1/8)( v cmax/ v cmax,host)−4  . Halo to halo variance in the VDF is a factor of roughly 2 to 4. At high redshifts, we find preliminary evidence for fewer large substructure haloes (subhaloes). Specific angular momenta are significantly lower for subhaloes nearer the host halo centre where tidal stripping is more effective. The radial distribution of subhaloes is marginally consistent with the mass profile for   r ≳ 0.3 r vir  , where the possibility of artificial numerical disruption of subhaloes can be most reliably excluded by our convergence study, although a subhalo distribution that is shallower than the mass profile is favoured. Subhalo masses but not circular velocities decrease towards the host centre. Subhalo velocity dispersions hint at a positive velocity bias at small radii. There is a weak bias towards more circular orbits at lower redshift, especially at small radii. We additionally model a cluster in several power-law cosmologies of   P ∝ kn   , and demonstrate that a steeper spectral index, n , results in significantly less substructure.  相似文献   

2.
Using a high-resolution cosmological N -body simulation, we identify the ejected population of subhaloes, which are haloes at redshift   z = 0  but were once contained in more massive 'host' haloes at high redshifts. The fraction of the ejected subhaloes in the total halo population of the same mass ranges from 9 to 4 per cent for halo masses from  ∼1011  to  ∼1012  h −1 M  . Most of the ejected subhaloes are distributed within four times the virial radius of their hosts. These ejected subhaloes have distinct velocity distribution around their hosts in comparison to normal haloes. The number of subhaloes ejected from a host of given mass increases with the assembly redshift of the host. Ejected subhaloes in general reside in high-density regions, and have a much higher bias parameter than normal haloes of the same mass. They also have earlier assembly times, so that they contribute to the assembly bias of dark matter haloes seen in cosmological simulations. However, the assembly bias is not dominated by the ejected population, indicating that large-scale environmental effects on normal haloes are the main source for the assembly bias.  相似文献   

3.
In the standard model of cosmic structure formation, dark matter haloes form by gravitational instability. The process is hierarchical: smaller systems collapse earlier, and later merge to form larger haloes. The galaxy clusters, hosted by the largest dark matter haloes, are at the top of this hierarchy and representing the largest as well as the last structures formed in the Universe, while the smaller and first haloes are those Earth-sized dark subhaloes that have been both predicted by theoretical considerations and found in numerical simulations, though there do not exist any observational hints of their existence. The probability that a halo of mass m at redshift z will be part of a larger halo of mass M at the present time can be described in the frame of the extended Press & Schecter theory making use of the progenitor (conditional) mass function. Using the progenitor mass function, we calculate analytically, at redshift zero, the distribution of subhaloes in mass, formation epoch and rarity of the peak of the density field at the formation epoch. That is done for a Milky Way size system, assuming both a spherical and an ellipsoidal collapse model. Our calculation assumes that small progenitors do not lose mass due to dynamical processes after entering the parent halo, and that they do not interact with other subhaloes. For a Λ cold dark matter power spectrum, we obtain a subhalo mass function  d n /d m   proportional to   m −α  with a model-independent  α∼ 2  . Assuming that the dark matter is a weakly interacting massive particle, the inferred distributions are used to test the feasibility of an indirect detection in the γ-ray energy band of such a population of subhaloes with a Gamma-ray Large Area Space Telescope like satellite.  相似文献   

4.
We present predictions for the line-of-sight velocity dispersion profiles of dwarf spheroidal galaxies and compare them to observations in the case of the Fornax dwarf. The predictions are made in the framework of standard dynamical theory of spherical systems with different velocity distributions. The stars are assumed to be distributed according to Sérsic laws with parameters fitted to observations. We compare predictions obtained assuming the presence of dark matter haloes (with density profiles adopted from N -body simulations) with those resulting from Modified Newtonian Dynamics (MOND). If the anisotropy of velocity distribution is treated as a free parameter, observational data for Fornax are reproduced equally well by models with dark matter and with MOND. If stellar mass-to-light ratio of 1 M/L is assumed, the required mass of the dark halo is     , two orders of magnitude larger than the mass in stars. The derived MOND acceleration scale is     . In both cases a certain amount of tangential anisotropy in the velocity distribution is needed to reproduce the shape of the velocity dispersion profile in Fornax.  相似文献   

5.
We have developed an algorithm, called voboz (VOronoi BOund Zones), to find haloes in an N -body dark matter simulation; it has as little dependence on free parameters as we can manage. By using the Voronoi diagram, we achieve non-parametric, 'natural' measurements of each particle's density and set of neighbours. We then eliminate much of the ambiguity in merging sets of particles together by identifying every possible density peak, and measuring the probability that each does not arise from Poisson noise. The main halo in a cluster tends to have a high probability, while its subhaloes tend to have lower probabilities. The first parameter in voboz controls the subtlety of particle unbinding, and may be eliminated if one is cavalier with processor time; even if one is not, the results saturate to the parameter-free answer when the parameter is sufficiently small. The only parameter that remains, an outer density cut-off, does not influence whether or not haloes are identified, nor does it have any effect on subhaloes; it only affects the masses returned for supercluster haloes.  相似文献   

6.
We consider the sensitivity of the circular-orbit adiabatic contraction approximation to the baryon condensation rate and the orbital structure of dark matter haloes in the Λ cold dark matter (ΛCDM) paradigm. Using one-dimensional hydrodynamic simulations including the dark matter halo mass accretion history and gas cooling, we demonstrate that the adiabatic approximation is approximately valid even though haloes and discs may assemble simultaneously. We further demonstrate the validity of the simple approximation for ΛCDM haloes with isotropic velocity distributions using three-dimensional N -body simulations. This result is easily understood: an isotropic velocity distribution in a cuspy halo requires more circular orbits than radial orbits. Conversely, the approximation is poor in the extreme case of a radial orbit halo. It overestimates the response of a core dark matter halo, where radial orbit fraction is larger. Because no astronomically relevant models are dominated by low angular momentum orbits in the vicinity of the disc and the growth time-scale is never shorter than a dynamical time, we conclude that the adiabatic contraction approximation is useful in modelling the response of dark matter haloes to the growth of a disc.  相似文献   

7.
On the nature of superoutbursts in dwarf novae   总被引:1,自引:0,他引:1  
We determine a crucial feature of the dark halo density distribution from the fact that the luminous matter dominates the gravitational potential at about one disc scalelength R d, but at the optical edge     the dark matter has already become the main component of the galaxy density. From the kinematics of 137 spirals we find that the dark matter halo density profiles are self-similar at least out to R opt and show core radii much larger than the corresponding disc scalelengths. The luminous regions of spirals consist of stellar discs embedded in dark haloes with roughly constant density. This invariant dark matter profile is very difficult to reconcile with the fundamental properties of the density distribution of cold dark matter haloes. With respect to previous work, the present evidence is obtained by means of a robust method and for a large and complete sample of normal spirals.  相似文献   

8.
We present a comparison of the properties of substructure haloes ( subhaloes ) orbiting within host haloes that form in cold dark matter (CDM) and warm dark matter (WDM) cosmologies. Our study focuses on selected properties of these subhaloes, namely their anisotropic spatial distribution within the hosts; the existence of a 'backsplash' population; the age–distance relation; the degree to which they suffer mass loss; and the distribution of relative (infall) velocities with respect to the hosts. We find that the number density of subhaloes in our WDM model is suppressed relative to that in the CDM model, as we would expect. Interestingly, our analysis reveals that backsplash subhaloes exist in both the WDM and CDM models. Indeed, there are no statistically significant differences between the spatial distributions of subhaloes in the CDM and WDM models. There is evidence that subhaloes in the WDM model suffer enhanced mass loss relative to their counterparts in the CDM model, reflecting their lower central densities. We note also a tendency for the (infall) velocities of subhaloes in the WDM model to be higher than in the CDM model. Nevertheless, we conclude that observational tests based on either the spatial distribution or the kinematics of the subhalo population are unlikely to help us to differentiate between the CDM model and our adopted WDM model.  相似文献   

9.
One of the predictions of the standard cold dark matter model is that dark haloes have centrally divergent density profiles. An extensive body of rotation curve observations of dwarf and low surface brightness galaxies shows the dark haloes of those systems to be characterized by soft constant-density central cores. Several physical processes have been proposed to produce soft cores in dark haloes, each one with different scaling properties. With the aim of discriminating among them we have examined the rotation curves of dark-matter-dominated dwarf and low surface brightness galaxies and the inner mass profiles of two clusters of galaxies lacking a central cD galaxy and with evidence of soft cores in the centre. The core radii and central densities of these haloes scale in a well-defined manner with the depth of their potential wells, as measured through the maximum circular velocity. As a result of our analysis we identify self-interacting cold dark matter as a viable solution to the core problem, where a non-singular isothermal core is formed in the halo centre surrounded by a Navarro, Frenk & White profile in the outer parts. We show that this particular physical situation predicts core radii in agreement with observations. Furthermore, using the observed scalings, we derive an expression for the minimum cross-section ( σ ) which has an explicit dependence with the halo dispersion velocity ( v ). If m x is the mass of the dark matter particle: σ m x ≈4×10−25 (100 km s−1  v −1) cm2 GeV−1.  相似文献   

10.
Based on results from cold dark matter N -body simulations, we develop a dynamical model for the evolution of subhaloes within group-sized host haloes. Only subhaloes more massive than 5 × 108 M are considered, because they are massive enough to possibly host luminous galaxies. On their orbits within a growing host potential the subhaloes are subject to tidal stripping and dynamical friction. At the present time  ( z = 0)  , all model hosts have equal mass  ( M vir= 3.9 × 1013 M)  but different concentrations associated with different formation times. We investigate the variation of subhalo (or satellite galaxy) velocity dispersion with host concentration and/or formation time. In agreement with the Jeans equation, the velocity dispersion of subhaloes increases with the host concentration. Between concentrations of ∼5 and ∼20, the subhalo velocity dispersions increase by a factor of ∼1.25. By applying a simplified tidal disruption criterion, that is, rejection of all subhaloes with a tidal truncation radius below 3  kpc at   z = 0  , the central velocity dispersion of the 'surviving' subhalo sample increases substantially for all concentrations. The enhanced central velocity dispersions in the surviving subhalo samples are caused by a lack of slow tangential motions. Additionally, we present a fitting formula for the anisotropy parameter which does not depend on concentration if the group-centric distances are scaled by r s, the characteristic radius of the Navarro, Frenk & White profile. Since the expected loss of subhaloes and galaxies due to tidal disruption increases the velocity dispersion of surviving galaxies, the observed galaxy velocity dispersion can substantially overestimate the virial mass.  相似文献   

11.
Galaxies are believed to be in one-to-one correspondence with simulated dark matter subhaloes. We use high-resolution N -body simulations of cosmological volumes to calculate the statistical properties of subhalo (galaxy) major mergers at high redshift ( z = 0.6–5). We measure the evolution of the galaxy merger rate, finding that it is much shallower than the merger rate of dark matter host haloes at   z > 2.5  , but roughly parallels that of haloes at   z < 1.6  . We also track the detailed merger histories of individual galaxies and measure the likelihood of multiple mergers per halo or subhalo. We examine satellite merger statistics in detail: 15–35 per cent of all recently merged galaxies are satellites, and satellites are twice as likely as centrals to have had a recent major merger. Finally, we show how the differing evolution of the merger rates of haloes and galaxies leads to the evolution of the average satellite occupation per halo, noting that for a fixed halo mass, the satellite halo occupation peaks at   z ∼ 2.5  .  相似文献   

12.
We use the Millennium Simulation, a large, high-resolution N -body simulation of the evolution of structure in a Λ cold dark matter cosmology, to study the properties and fate of substructures within a large sample of dark matter haloes. We find that the subhalo mass function departs significantly from a power law at the high-mass end. We also find that the radial and angular distributions of substructures depend on subhalo mass. In particular, high-mass subhaloes tend to be less radially concentrated and to have angular distributions closer to the direction perpendicular to the spin of the host halo than their less massive counterparts. We find that mergers between subhaloes occur. These tend to be between substructures that were already dynamically associated before accretion into the main halo. For subhaloes larger than 0.001 times the mass of the host halo, it is more likely that the subhalo will merge with the central or main subhalo than with another subhalo larger than itself. For lower masses, subhalo–subhalo mergers become equally likely to mergers with the main subhalo. Our results have implications for the variation of galaxy properties with environment and for the treatment of mergers in galaxy formation models.  相似文献   

13.
N -body simulations of cold dark matter (CDM) have shown that, in this hierarchical structure formation model, dark matter halo properties, such as the density profile, the phase-space density profile, the distribution of axial ratio, the distribution of spin parameter and the distribution of internal specific angular momentum, follow 'universal' laws or distributions. Here, we study the properties of the first generation of haloes in a hot dark matter (HDM) dominated universe, as an example of halo formation through monolithic collapse. We find all these universalities to be present in this case also. Halo density profiles are very well fit by the Navarro, Frenk & White profile over two orders of magnitude in mass. The concentration parameter depends on mass as   c ∝ M 0.2  , reversing the dependence found in a hierarchical CDM universe. However, the concentration–formation time relation is similar in the two cases: earlier forming haloes tend to be more concentrated than their later forming counterparts. Halo formation histories are also characterized by two phases in the HDM case: an early phase of rapid accretion followed by slower growth. Furthermore, there is no significant difference between the HDM and CDM cases concerning the statistics of other halo properties: the phase-space density profile; the velocity anisotropy profile; the distribution of shape parameters; the distribution of spin parameter and the distribution of internal specific angular momentum are all similar in the two cases. Only substructure content differs dramatically. These results indicate that mergers do not play a pivotal role in establishing the universalities, thus contradicting models which explain them as consequences of mergers.  相似文献   

14.
High-resolution simulations of cosmological structure formation indicate that dark matter substructure in dense environments, such as groups and clusters, may survive for a long time. These dark matter subhaloes are the likely hosts of galaxies. We examine the small-scale spatial clustering of subhalo major mergers at high redshift using high-resolution N -body simulations of cosmological volumes. Recently merged, massive subhaloes exhibit enhanced clustering on scales  ∼100–300  h −1 kpc  , relative to all subhaloes of the same infall mass, for a short time after a major merger (<500 Myr). The small-scale clustering enhancement is smaller for lower mass subhaloes, which also show a deficit on scales just beyond the excess. Haloes hosting recent subhalo mergers tend to have more subhaloes; for massive subhaloes, the excess is stronger and it tends to increase for the most massive host haloes. The subhalo merger fraction is independent of halo mass for the scales we probe. In terms of satellite and central subhaloes, the merger increase in small-scale clustering for massive subhaloes arises from recently merged massive central subhaloes having an enhanced satellite population. Our mergers are defined via their parent infall mass ratios. Subhaloes experiencing major mass gains also exhibit a small-scale clustering enhancement, but these correspond to two-body interactions leading to two final subhaloes, rather than subhalo coalescence.  相似文献   

15.
We examine the properties of dark matter haloes within a rich galaxy cluster using a high-resolution simulation that captures the cosmological context of a cold dark matter universe. The mass and force resolution permit the resolution of 150 haloes with circular velocities larger than 80 km s−1 within the cluster virial radius of 2 Mpc (with Hubble constant H 0 = 50 km s−1 Mpc−1). This enables an unprecedented study of the statistical properties of a large sample of dark matter haloes evolving in a dense environment. The cumulative fraction of mass attached to these haloes varies from close to zero per cent at 200 kpc to 13 per cent at the virial radius. Even at this resolution the overmerging problem persists; haloes that pass within 100–200 kpc of the cluster centre are tidally disrupted. Additional substructure is lost at earlier epochs within the massive progenitor haloes. The median ratio of apocentric to pericentric radii is 6:1, so that the orbital distribution is close to isotropic, circular orbits are rare and radial orbits are common. The orbits of haloes are unbiased with respect to both position within the cluster and the orbits of the smooth dark matter background, and no velocity bias is detected. The tidal radii of surviving haloes are generally well-fitted using the simple analytic prediction applied to their orbital pericentres. Haloes within clusters have higher concentrations than those in the field. Within the cluster, halo density profiles can be modified by tidal forces and individual encounters with other haloes that cause significant mass loss —'galaxy harassment'. Mergers between haloes do not occur inside the cluster virial radius.  相似文献   

16.
We use high-quality optical rotation curves of nine low-luminosity disc galaxies to obtain the velocity profiles of the surrounding dark matter haloes. We find that they increase linearly with radius at least out to the edge of the stellar disc, implying that, over the entire stellar region, the density of the dark halo is about constant.
The properties of the mass structure of these haloes are similar to those found for a number of dwarf and low surface brightness galaxies, but provide a more substantial evidence of the discrepancy between the halo mass distribution predicted in the cold dark matter scenario and those actually detected around galaxies. We find that the density law proposed by Burkert reproduces the halo rotation curves, with halo central densities ( ρ 0∼1–4×10−24 g cm−3) and core radii ( r 0∼5–15 kpc) scaling as ρ 0∝ r 0−2/3.  相似文献   

17.
The interaction of fragmented plasma of active galactic nuclei jets with galactic haloes via gravitational scattering and lensing by dark matter subhaloes is studied using analytical calculations and numerical Monte-Carlo method. The lensing of jet radiation by halo masses is found to be negligible and unobservable. Moving through a galactic halo jet plasma fragments are sequentially deflected on hyperbolic orbits by gravitational field of subhaloes and deviates at some angles when leaving halo, causing widening of the jet. Based on this model jet opening angles are calculated numerically for various values of jet and halo characteristics. Though these angles are very small, gravitational scattering by halo masses results in specific radial profile of jet radiation intensity, that does not depend on halo mass distribution and jet properties. The intensity of jet radiation, obeying the derived profile, decreases by reasonable observable factors giving possibility to probe the presence of dark matter subhaloes.  相似文献   

18.
We perform collisionless N -body simulations of 1:1 galaxy mergers, using models which include a galaxy halo, disc and bulge, focusing on the behaviour of the halo component. The galaxy models are constructed without recourse to a Maxwellian approximation. We investigate the effect of varying the galaxies' orientation, their mutual orbit and the initial velocity anisotropy or cusp strength of the haloes upon the remnant halo density profiles and shape, as well as on the kinematics. We observe that the halo density profile (determined as a spherical average, an approximation we find appropriate) is exceptionally robust in mergers, and that the velocity anisotropy of our remnant haloes is nearly independent of the orbits or initial anisotropy of the haloes. The remnants follow the halo anisotropy – local density slope (β–γ) relation suggested by Hansen & Moore in the inner parts of the halo, but β is systematically lower than this relation predicts in the outer parts. Remnant halo axis ratios are strongly dependent on the initial parameters of the haloes and on their orbits. We also find that the remnant haloes are significantly less spherical than those described in studies of simulations which include gas cooling.  相似文献   

19.
The cooling of gas in the centres of dark matter haloes is expected to lead to a more concentrated dark matter distribution. The response of dark matter to the condensation of baryons is usually calculated using the model of adiabatic contraction, which assumes spherical symmetry and circular orbits. Following Gnedin et al., we improve this model by modifying the assumed invariant from M ( r ) r to     , where r and     are the current and orbit-averaged particle positions. We explore the effect of the bulge in the inner regions of the halo for different values of the bulge-to-disc mass ratio. We find that the bulge makes the velocity curve rise faster in the inner regions of the halo. We present an analytical fitting curve that describes the velocity curve of the halo after dissipation. The results should be useful for dark matter detection studies.  相似文献   

20.
We study the distribution of dark matter in dwarf spheroidal galaxies by modelling the moments of their line-of-sight velocity distributions. We discuss different dark matter density profiles, both cuspy and possessing flat density cores. The predictions are made in the framework of standard dynamical theory of two-component (stars and dark matter) spherical systems with different velocity distributions. We compare the predicted velocity dispersion profiles to observations in the case of Fornax and Draco dwarfs. For isotropic models the dark haloes with cores are found to fit the data better than those with cusps. Anisotropic models are studied by fitting two parameters, dark mass and velocity anisotropy, to the data. In this case all profiles yield good fits, but the steeper the cusp of the profile, the more tangential is the velocity distribution required to fit the data. To resolve this well-known degeneracy of density profile versus velocity anisotropy, we obtain predictions for the kurtosis of the line-of-sight velocity distribution for models found to provide best fits to the velocity dispersion profiles. It turns out that profiles with cores typically yield higher values of kurtosis which decrease more steeply with distance than the cuspy profiles, which will allow us to discriminate between the profiles once the kurtosis measurements become available. We also show that with present quality of the data the alternative explanation of velocity dispersions in terms of Modified Newtonian Dynamics cannot yet be ruled out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号