首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report a Chandra observation of the   z =3.395  radio galaxy B2 0902+343. The unresolved X-ray source is centred on the active nucleus. The spectrum is well fitted by a flat power law of photon index of  Γ∼1.1  with intrinsic absorption of  8×1022 cm-2  , and an intrinsic  2–10 keV  luminosity of  3.3×1045 erg s-1  . More complex models that allow for a steeper spectral index cause the column density and intrinsic luminosity to increase. The data limit any thermal luminosity of the hot magnetized medium, assumed responsible for high Faraday rotation measures seen in the radio source, to less than ∼1045 erg s−1.  相似文献   

2.
Using the recently completed Giant Meterwave Radio Telescope, we have detected the HI 21 cm-line absorption from the peculiar galaxy C153 in the galaxy cluster Abell 2125. The HI absorption is at a redshift of 0.2533, with a peak optical depth of 0.36. The full width at half minimum of the absorption line is 100 km s−1. The estimated column density of atomic Hydrogen is 0.7×1022(T s /100) cm−2. The HI absorption is redshifted by ∼400km s−1 compared to the [OIII] emission line from this system. We attribute this to an infalling cold gas or to an out-flowing ionised gas, or to a combination of both as a consequence of tidal interactions of C153 with either a cluster galaxy or the cluster potential.  相似文献   

3.
We present results from a Keck optical and near IR spectroscopic study of the giant emission line halos of the z>3 High Redshift Radio Galaxies (HiZRGs) 4C 41.17, 4C 60.07 and B2 0902+34. The outer regions of these halos show quiet kinematics with typical velocity dispersions of a few hundred km s−1 and velocity shears consistent with rotation. The inner regions contain shocked, clumpy cocoons of gas closely associated with the radio lobes with disturbed kinematics and expansion velocities and/or velocity dispersions >1000 km s−1. We also find evidence for the ejection of chemically enriched material in 4C 41.17 up to a distance of ∼60 kpc along the radio-axis. We infer that these HiZRGs are undergoing a final jet-induced phase of star formation with the ejection of most of their interstellar medium before evolving to become “red and dead” Elliptical galaxies.  相似文献   

4.
We report on centimeter VLA and VLBI observations of the giant, low power radio galaxy 1144+35. On the parsec scale, we see a complex jet component moving away from the center of activity at 2.7h50−1 c. We detect a faint parsec-scale counter-jet and derive a jet velocity of 0.95c and an angle to the line of sight of 25°, consistent with an intrinsically symmetric ejection. These findings lend credence to the claim that even the jets of low-power radio galaxies start out relativistically.  相似文献   

5.
We report on observations, with sub-parsec resolution, of neutral hydrogen seen in absorption in the λ=21 cm line against the nucleus of the active spiral galaxy NGC 5793. The absorption line consists of three components separated in both location as well as velocity. We derive HI column densities of 2×1022 cm−2 assuming a gas spin temperature of 100 K. For the first time we are able to reliably estimate the HI cloud sizes (≈15 pc) and atomic gas densities (≈200 cm−3). Our results suggest that the HI gas is not associated with the <10 pc region which presumably contains the H2O masers, but it is more distant from the nucleus, and is probably associated with the r1 kpc gas seen in CO.  相似文献   

6.
We present new observational results that conclude that the nearby radio galaxy B2 0722+30 is one of the very few known disc galaxies in the low-redshift Universe that host a classical double-lobed radio source. In this paper, we use H  i observations, deep optical imaging, stellar population synthesis modelling and emission-line diagnostics to study the host galaxy, classify the active galactic nucleus (AGN) and investigate environmental properties under which a radio-loud AGN can occur in this system. Typical for spiral galaxies, B2 0722+30 has a regularly rotating gaseous disc throughout which star formation occurs. Dust heating by the ongoing star formation is likely responsible for the high infrared luminosity of the system. The optical emission-line properties of the central region identify a Low Ionization Nuclear Emission-line Region (LINER)-type nucleus with a relatively low [O  iii ] luminosity, in particular when compared with the total power of the Fanaroff & Riley type-I radio source that is present in this system. This classifies B2 0722+30 as a classical radio galaxy rather than a typical Seyfert galaxy. The environment of B2 0722+30 is extremely H  i -rich, with several nearby interacting galaxies. We argue that a gas-rich interaction involving B2 0722+30 is a likely cause for the triggering of the radio AGN and/or the fact that the radio source managed to escape the optical boundaries of the host galaxy.  相似文献   

7.
We present and discuss observations of the radio galaxy 0755+379 made with the VLA at 1.4 and 5.0 GHz and with MERLIN at 1.7 GHz. These data allow us to image the radio jets over two orders of magnitude in linear size and to investigate the hypothesis that jets in low-luminosity radio galaxies start with velocities close to c and then slow down to subrelativistic speeds. We apply a model for an adiabatically expanding relativistic jet to the observed surface brightness and derive velocity profiles along the jet for various assumed starting conditions. We show that these profiles are consistent with the observed jet/counter-jet brightness ratios provided that the angle to the line of sight θ ≃27°. The inferred velocity at a distance of 0.5 kpc from the nucleus is ≃0.9 c . Finally, we show that the predicted velocity at 10 kpc from the nucleus is consistent with that obtained independently from energy-balance arguments.  相似文献   

8.
9.
10.
We present Very Large Array images of a 'double–double radio galaxy', a class of objects in which two pairs of lobes are aligned either side of the nucleus. In this object, B0 925+420, we discover a third pair of lobes, close to the core and again in alignment with the other lobes. This first-known 'triple–double' object strongly increases the likelihood that these lobes represent multiple episodes of jet activity, as opposed to knots in an underlying jet. We model the lobes in terms of their dynamical evolution. We find that the inner pair of lobes are consistent with the outer pair having been displaced buoyantly by the ambient medium. The middle pair of lobes are more problematic – to the extent where an alternative model interpreting the middle and inner 'lobes' as additional bow shocks within the outer lobes may be more appropriate – and we discuss the implications of this on our understanding of the density of the ambient medium.  相似文献   

11.
We report the discovery of a double–double radio galaxy (DDRG), J0041+3224, with the Giant Metrewave Radio Telescope (GMRT) and subsequent high-frequency observations with the Very Large Array (VLA). The inner and outer doubles are aligned within ∼4° and are reasonably collinear with the parent optical galaxy. The outer double has a steeper radio spectrum compared to the inner one. Using an estimated redshift of 0.45, the projected linear sizes of the outer and inner doubles are 969 and 171 kpc, respectively. The time-scale of interruption of jet activity has been estimated to be ∼20 Myr, similar to other known DDRGs. We have compiled a sample of known DDRGs, and have re-examined the inverse correlation between the ratio of the luminosities of the outer to the inner double and the size of the inner double, l in. Unlike the other DDRGs with   l in≳ 50 kpc  , the inner double of J0041+3224 is marginally more luminous than the outer one. The two DDRGs with   l in≲  few kpc have a more luminous inner double than the outer one, possibly due to a higher efficiency of conversion of beam energy as the jets propagate through the dense interstellar medium. We have examined the symmetry parameters and found that the inner doubles appear to be more asymmetric in both its armlength and its flux density ratios compared to the outer doubles, although they appear marginally more collinear with the core than the outer double. We discuss briefly the possible implications of these trends.  相似文献   

12.
We present new radio observations at frequencies ranging from 240 to 4860 MHz of the well-known, double–double radio galaxy (DDRG), J1453+3308, using both the Giant Metrewave Radio Telescope (GMRT) and the Very Large Array (VLA). These observations enable us to determine the spectra of the inner and outer lobes over a large frequency range and demonstrate that while the spectrum of the outer lobes exhibits significant curvature, that of the inner lobes appears practically straight. The break frequency, and hence the inferred synchrotron age of the outer structure, determined from 16-arcsec strips transverse to the source axis, increases with distance from the heads of the lobes. The maximum spectral ages for the northern and southern lobes are ∼47 and 58 Myr, respectively. Because of the difference in the lengths of the lobes, these ages imply a mean separation velocity of the heads of the lobes from the emitting plasma of 0.036 c for both the northern and southern lobes. The synchrotron age of the inner double is about 2 Myr which implies an advance velocity of ∼0.1 c , but these values have large uncertainties because the spectrum is practically straight.  相似文献   

13.
We present an analysis of multi-epoch global VLBI observations of the Compact Symmetric Objects: 2352+495 and 0710+439 at 5 GHz. Analysis of data spread over almost two decades shows strong evidence for an increase in separation of the outer components of both sources at a rate of 0.2h−1c (for q=0.5 and H=100h km s−1Mpc−1). Dividing the overall sizes of the sources by their separation rates implies that these Compact Symmetric Objects have a kinematic age 104 years. These results (and those for other CSOs) strongly argue that CSOs are indeed very young sources that probably evolve into much larger classical doubles.  相似文献   

14.
15.
We report on the extreme behaviour of the high-redshift blazar GB B1428+4217 at   z = 4.72  . A continued programme of radio measurements has revealed an exceptional flare in the light curve, with the 15.2-GHz flux density rising by a factor of ∼3 from ∼140 to ∼430  mJy in a rest-frame time-scale of only ∼4 months – much larger than any previous flares observed in this source. In addition to new measurements of the 1.4–43  GHz radio spectrum, we also present the analysis and results of a target-of-opportunity X-ray observation using XMM–Newton , made close to the peak in radio flux. Although the X-ray data do not show a flare in the high-energy light curve, we are able to confirm the X-ray spectral variability hinted at in previous observations. GB B1428+4217 is one of several high-redshift radio-loud quasars that display a low-energy break in the X-ray spectrum, probably due to the presence of excess absorption in the source. X-ray spectral analysis of the latest XMM–Newton data is shown to be consistent with the warm-absorption scenario which we have hypothesized previously. Warm absorption is also consistent with the observed X-ray spectral variability of the source, in which the spectral changes can be successfully accounted-for with a fixed column density of material in which the ionization state is correlated with hardness of the underlying power-law emission.  相似文献   

16.
We have discovered a radio source (B2114+022) with a unique structure during the course of the JVAS gravitational lens survey. VLA, MERLIN, VLBA and MERLIN+EVN radio maps reveal four compact components, in a configuration unlike that of any known lens system, or, for that matter, any of the ∼15 000 radio sources in the JVAS and CLASS surveys. Three of the components are within 0.3 arcsec of each other while the fourth is separated from the group by 2.4 arcsec. The widest separation pair of components have similar radio structures and spectra. The other pair also have similar properties. This latter pair have spectra which peak at ∼5 GHz. Their surface brightnesses are much lower than expected for synchrotron self-absorbed components.
Ground-based and Hubble Space Telescope optical observations show two galaxies ( z =0.3157 and 0.5883) separated by 1.25 arcsec. The lower redshift galaxy has a post-starburst spectrum and lies close to, but not coincident with, the compact group of three radio components. No optical or infrared emission is detected from any of the radio components down to I =25 and H =23 . We argue that the most likely explanation of the B2114+022 system is that the post-starburst galaxy, assisted by the second galaxy, lenses a distant radio source producing the two wide-separation images. The other two radio components are then associated with the post-starburst galaxy. The combination of the angular sizes of these components, their radio spectra and their location with respect to their host galaxy still remains puzzling.  相似文献   

17.
18.
We present multifrequency radio continuum as well as H  i observations of the superwind galaxy NGC 1482, with both the Giant Metrewave Radio Telescope (GMRT) and the Very Large Array (VLA). This galaxy has a remarkable hourglass-shaped optical emission-line outflow as well as bipolar soft X-ray bubbles on opposite sides of the galactic disc. The low-frequency, lower-resolution radio observations show a smooth structure. From the non-thermal emission, we estimate the available energy in supernovae, and examine whether this would be adequate to drive the observed superwind outflow. The high-frequency, high-resolution radio image of the central starburst region located at the base of the superwind bi-cone shows one prominent peak and more extended emission with substructure. This image has been compared with the infrared, optical red continuum, Hα, and soft and hard X-ray images from Chandra to understand the nature and relationship of the various features seen at different wavelengths. The peak of the infrared emission is the only feature that is coincident with the prominent radio peak, and possibly defines the centre of the galaxy.
The H  i observations with the GMRT show two blobs of emission on opposite sides of the central region. These are rotating about the centre of the galaxy and are located at ∼2.4 kpc from it. In addition, these observations also reveal a multicomponent H  i absorption profile against the central region of the radio source, with a total width of ∼250 km s−1. The extreme blue- and redshifted absorption components are at 1688 and 1942 km s−1, respectively, while the peak absorption is at 1836 km s−1. This is consistent with the heliocentric systemic velocity of  1850 ± 20 km s−1  , estimated from a variety of observations. We discuss possible implications of these results.  相似文献   

19.
20.
We present results of the ASCA observation of the Seyfert 2 galaxy NGC 4507. The 0.5–10 keV spectrum is rather complex and consists of several components: (i) a hard X-ray power law heavily absorbed by a column density of about 3-1023 cm−2, (ii) a narrow Fe Kα line at 6.4 keV, (iii) soft continuum emission well above the extrapolation of the absorbed hard power law and (iv) a narrow emission line at ∼0.9 keV. The line energy, consistent with highly ionized neon (Ne IX ), may indicate that the soft X-ray emission is derived from a combination of resonant scattering and fluorescence in a photoionized gas. Some contribution to the soft X-ray spectrum from thermal emission, as a blend of Fe L lines, by a starburst component in the host galaxy cannot be ruled out with the present data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号