首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The method of time delay correlation function (TDCF) is a new method for calculating the sequential time delays. This method is utilized to calculate the time delays in 3 radio wave bands (4.8 GHz, 8 GHz and 14.5 GHz) of the blazar 0316 + 413 (NGC 1275) and to make the multi-band correlation analysis for other 7 blazar sources. The calculated result of the blazar 0316 + 413 shows that its light curve at 4.8 GHz lags by 410 d behind that at 8 GHz, or τ4.8−8 = 410 d; the light curve at 4.8 GHz lags by 440 d behind that at 14.5 GHz, or τ4.8−14.5 = 440 d; and the light curve at 8 GHz lags by 30 d behind that at 14.5 GHz, or τ8−14.5 = 30 d. In comparison with the method of discrete correlation function (DCF), the time delay obtained by taking advantage of the TDCF method is much more rational for the multi-band correlation analysis of the 7 blazars.  相似文献   

2.
The eclipse was observed at two microwave frequencies, 7 GHz and 22.2 GHz, and has shown the presence of polarized regions, suggesting also excess of left-handed polarized radiation from the solar northern hemisphere. Difference in eclipsing times at the two frequencies for an active center near the limb is discussed.  相似文献   

3.
Xu  Fu-Ying  Xu  Zhi-Cai  Huang  Guang-Ii  Yao  Qi-Jun  Meng  Xuan  Wu  Hong-Ao 《Solar physics》2003,216(1-2):273-284
A broadband solar radio spectrometer with a bandwidth of about 7 GHz has been developed in China for solar maximum 23. This work is a cooperative project of Beijing Astronomical Observatory (BAO), Purple Mountain Observatory (PMO), Yunnan Observatory (YNO), and Nanjing University. The spectrometer of PMO worked in the waveband of 4.5–7.5 GHz, that of BAO in 1–2 GHz, 2.6–3.8 GHz, and 5.2–7.6 GHz, and that of YNO in 0.7–1.5 GHz. The spectrometer of PMO is a multichannel and frequency-agile one with a time resolution of 1–5 ms and a frequency resolution of 10 MHz. It started to operate in August 1999 and since then more than 300 spectral events have been observed, and some type III or type III-like structures have also been found. In this paper, some selected typical events, for example, the events on 25 August 1999 and 27 October 1999, are presented, and some new observed features are also described and discussed.  相似文献   

4.
The more impulsive 7 GHz bursts seem to prefer the solar limb regions, while the degree of polarization decreases with increasing impulsivity.  相似文献   

5.
Simultaneous microwave and X-ray observations are presented for a solar flare detected on May 8, 1980 starting at 19:37 UT. The X-ray observations were made with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission and covered the energy range from 28–490 keV with a time resolution of 10 ms. The microwave observations were made with the 5 and 45 foot antennas at the Itapetinga Radio Observatory at frequencies of 7 and 22 GHz, with time resolutions of 100 ms and 1 ms, respectively. Detailed correlation analysis of the different time profiles of the event show that the major impulsive peaks in the X-ray flux preceded the corresponding microwave peaks at 22 GHz by about 240 ms. For this particular burst the 22 GHz peaks preceded the 7 GHz by about 1.5 s. Observed delays of the microwave peaks are too large for a simple electron beam model but they can be reconciled with the speeds of shock waves in a thermal model.  相似文献   

6.
Various solar bursts have been analysed with high sensitivity (0.03 sfu, rms) and high-time resolution (1 ms) at two frequencies in the millimeter wave range (22 GHz and 44 GHz), and with moderate time resolution (100 ms) by a patrol telescope at a frequency in the microwave range (7 GHz). It was found that, in most cases, burst maximum emission is not coincident in time at those frequencies. Preceding maximum emission can be either at the higher or at the lower frequency. Time delays ranged from about 3 s to near coincidence, defined within 10 ms. Some complex bursts presented all kinds of delays among different time structures, and sometimes nearly uncorrelated time structures.Large time delays favour the association of the dynamic effects to shock wave speeds. Directional particle acceleration in complex magnetic configuration could be considered to explain the variety of the dynamic effects. Fastest burst rise times observed, less than 50 ms at 44 GHz and at 22 GHz, might be associated to limiting formation times of emission sources combined with various absorption mechanisms at the source and surrounding plasma.In memoriam, 1942–1981.INPE operates Itapetinga Radio Observatory and CRAAM.  相似文献   

7.
We have studied the variability of S5 0716+714 at radio 15 GHz and \(\gamma\)-ray band using three different methods. A possible periodicity of \(P_{15~\text{GHz}}=266.0\pm11.5\) and \(P_{\gamma}=344.0 \pm16.4\) days are obtained for radio 15 GHz and \(\gamma\)-ray light curves, respectively. The variability may be related to the intrinsically emission mechanism. The difference between the variability timescales of radio 15 GHz and \(\gamma \)-ray may be due to that the emission of radio 15 GHz is produced via the synchrotron process, while the \(\gamma\)-ray is produced by both the SSC and EC processes.  相似文献   

8.
We obtained optical spectra of four objects identified with variable radio sources. Three objects (0029+0554, 0400+0550, 2245+0500) were found to be quasars with redshifts of 1.314, 0.761, and 1.091. One object (2349+0534) has a continuum spectrum characteristic of BL Lac objects. We analyze spectra of the radio sources in the range 0.97–21.7 GHz for the epoch 1997 and in the range 3.9–11.1 GHz for the epoch 1990, as well as the pattern of variability of their flux densities on time scales of 1.5 and 7 years.  相似文献   

9.
We present the first determination of the Galactic polarized emission at 353 GHz by Archeops. The data were taken during the Arctic night of February 7, 2002 after the balloon-borne instrument was launched by CNES from the Swedish Esrange base near Kiruna. In addition to the 143 and 217 GHz frequency bands dedicated to CMB studies, Archeops had one 545 GHz and six 353 GHz bolometers mounted in three polarization sensitive pairs that were used for Galactic foreground studies. We present maps of the I,Q,U Stokes parameters over 17% of the sky and with a 13 arcmin resolution at 353 GHz (850 μm). They show a significant Galactic large scale polarized emission coherent on the longitude ranges [100°,120°] and [180°,200°] with a degree of polarization at the level of 4–5%, in agreement with expectations from starlight polarization measurements. Some regions in the Galactic plane (Gem OB1, Cassiopeia) show an even stronger degree of polarization in the range 10–20%. Those findings provide strong evidence for a powerful grain alignment mechanism throughout the interstellar medium and a coherent magnetic field coplanar to the Galactic plane. This magnetic field pervades even some dense clouds. Extrapolated to high Galactic latitude, these results indicate that interstellar dust polarized emission is the major foreground for PLANCK-HFI CMB polarization measurement.  相似文献   

10.
The spectrum of the S-component of solar radio emission has been investigated at 4 GHz, 17 GHz, 35 GHz, 70 GHz, and 94 GHz. The spectrum for a spot group which appeared late in March 1966 (McMath plage No. 8223), seems to be flat at the frequencies above about 35 GHz. This implies that the emission is due to pure free-free emission at the frequencies above 35 GHz.  相似文献   

11.
Priscilla N Mohammed 《Icarus》2003,166(2):425-435
Recently, a model for the centimeter-wavelength opacity of PH3 under conditions characteristic of the outer planets was developed by Hoffman et al. (2001, PhD thesis), based on centimeter wavelength laboratory measurements. New laboratory measurements have been conducted which show that this model is also accurate at low pressures and temperatures, and at millimeter wavelengths such as will be employed in Cassini Ka-band (9.3 mm) radio occultation studies. The opacity of PH3 in a hydrogen/helium (H2/He) atmosphere has been measured at frequencies in the Ka-band region at 32.7 GHz (9.2 mm), 35.6 GHz (8.4 mm), 37.7 GHz (8.0 mm), and 39.9 GHz (7.5 mm) at pressures of 0.5, 1, and 2 bar and at temperatures of 295, 209, and 188 K. Additionally, new high-precision laboratory measurements of the opacity of NH3 in an H2/He atmosphere have been conducted under the same temperature and pressure conditions described for PH3. These new measurements better constrain the NH3 opacity model supporting use of a Ben-Reuven lineshape model. These measurements will also elucidate the interpretation of millimeter wavelength observations conducted with the NRAO/VLA at 43 GHz (7 mm).  相似文献   

12.
The results of observations of the quasar J0530+1331 (B0528+134) with the radio telescopes RATAN-600 at frequencies of 4.6, 8.2, 11.2, 21.7 GHz and RT-32 at the Zelenchukskaya and Badary observatories of the Quasar network of the Institute of Applied Astronomy, the Russian Academy of Sciences, at frequencies of 4.84 and 8.57 GHz in 2014–2015 are presented. A strong variability on a timescale of 20 days at 4.6–11.2 GHz has been detected over three months of daily RATAN-600 observations; the variability indices are V = dS/〈S〉; = 0.65?0.39. The spectrum of the variable component is falling toward high frequencies with an index α = ?0.76. The structure and autocorrelation functions at 4.6 GHz show an additional process on a timescale of 7 days. No delay of the main process has been detected between 11.2 and 8.2 GHz; the delay between 8.2 and 4.6 GHz does not exceed two days. The most likely cause of the observed variability is the scattering by inhomogeneities of the interstellar medium. The variability has been obtained at theminimum activity phase of the source. The intraday variability (IDV) has been searched for at both RT-32 telescopes since April 2014. Out of 38 successful observing sessions for the source, only three have shown a variability on a timescale of four hours or more at a significance level no higher than 0.1%. This confirms our conclusion drawn from the previous IDV measurements for other sources that the IDV is observed mainly at the maximum phases of long-term variability of the sources.  相似文献   

13.
The cumulene carbenes are important components of hydrocarbon chemistry in low-mass star-forming cores. Here we report the first astronomical detection of the long-chain cumulene carbene H2C6 in the interstellar cloud TMC-1, from observations of two of its rotational transitions: J(K,K') = 7(1,7) --> 6(1,6) at 18.8 GHz and 8(1,8) --> 7(1,7) at 21.5 GHz, using NASA's Deep Space Network 70 m antenna at Goldstone, California. In addition we also observed the shorter cumulene carbene H2C4 at the same position. The fractional abundance of H2C6 relative to H2 is about 4.7 x 10(-11) and that of H2C4 is about 4.1 x 10(-9). The abundance of H2C6 is in fairly good agreement with gas-phase chemical models for young molecular cloud cores, but the abundance of H2C4 is significantly larger than predicted.  相似文献   

14.
乌鲁木齐25m射电望远镜脉冲星观测研究   总被引:2,自引:0,他引:2  
乌鲁木齐天文站自1999年以来陆续研制完成脉冲星1.5GHz频段消色散接收系统,0.327GHz,0.61GHz,2.3GHz,4.8Hz和8.4GHz等5个频段上的单通道的脉冲星接收系统和2组双频(2.3GHz和8.4GHz及0.327GHz和0.61GHz)同时观测的接收系统,上述设备均已投入观测,并取得一批诸如脉冲星周期参数,周期跃变,逢行速率,脉冲轮廓模式变化,星际闪和谱特性等观测成果。  相似文献   

15.
L1498 is a classic example of a dense cold pre-protostellar core. To study the evolutionary status, the structure, dynamics, and chemical properties of this core we have obtained high spatial and high spectral resolution observations of molecules tracing densities of 10(3)-10(5) cm-3. We observed CCS, NH3, C3H2, and HC7N with NASA's DSN 70 m antennas. We also present large-scale maps of C18O and 13CO observed with the AT&T 7 m antenna. For the high spatial resolution maps of selected regions within the core we used the VLA for CCS at 22 GHz, and the Owens Valley Radio Observatory (OVRO) MMA for CCS at 94 GHz and CS (2-1). The 22 GHz CCS emission marks a high-density [n(H2) > 10(4) cm -3] core, which is elongated with a major axis along the SE-NW direction. NH3 and C3H2 emissions are located inside the boundary of the CCS emission. C18O emission traces a lower density gas extending beyond the CCS boundary. Along the major axis of the dense core, CCS, NH3 and C3H2 emission show evidence of limb brightening. The observations are consistent with a chemically differentiated onion-shell structure for the L1498 core, with NH3 in the inner and CCS in the outer parts of the core. The high angular resolution (9"-12") spectral line maps obtained by combining NASA Goldstone 70 m and VLA data resolve the CCS 22 GHz emission in the southeast and northwest boundaries into arclike enhancements, supporting the picture that CCS emission originates in a shell outside the NH3 emitting region. Interferometric maps of CCS at 94 GHz and CS at 98 GHz show that their emitting regions contain several small-scale dense condensations. We suggest that the differences between the CCS, CS, C3H2, and NH3 emission are caused by a time-dependent effect as the core evolves slowly. We interpret the chemical and physical properties of L1498 in terms of a quasi-static (or slowly contracting) dense core in which the outer envelope is still growing. The growth rate of the core is determined by the density increase in the CCS shell resulting from the accretion of the outer low-density gas traced by C18O. We conclude that L1498 could become unstable to rapid collapse to form a protostar in less than 5 x 10(6) yr.  相似文献   

16.
No fluctuations in polarization have been found during a 7 GHz solar burst showing 17 s periodic pulses in intensity. Polarization effects can be produced by the propagation media in the active centre, which are not affected directly by the burst source, but situated more deeply than the observed heights at that microwave frequency.  相似文献   

17.
A southern hemisphere survey of methanol emission sources has been carried out using the Australia Telescope National Facility Mopra millimetre telescope. 85 sources, the majority of them masers, have been detected in the 80−71 A+ transition of methanol at 95 GHz. Together with a similar northern hemisphere survey, this completes the search for 95-GHz methanol emission from the Galactic plane. The previously found correlation between intensities of methanol emission at 44 and 95 GHz is confirmed here with the larger sample of sources. The results of large velocity gradient statistical equilibrium calculations confirm the classification of these sources as class I methanol masers pumped through collisional excitation.  相似文献   

18.
Four very young (0.25 GYr) dwarf stars were observed at 4.9, 8.4, and 15.0 GHz for a total of 29 hours spread over 10 days during June, July, and August 1993. The Very Large Array in Socorro, New Mexico, was used in C configuration with the maximum antenna separation of 3.4 km. Analysis of observational data so far reveal a flux of 0.226 mJy at 4.9 GHz and 0.093 mJy at 8.4 GHz from HD39587, and 0.041 mJy at 4.9 GHz from HD72905. Upper limits for flux were established for HD72905 (0.017 mJy @ 8.4 GHz) , HD115383 (0.053 mJy @ 4.9 GHz, and 0.055 mJy @ 8.4 GHz), and HD206860 (0.042 mJy @ 4.9 GHz, and 0.045 mJy @ 8.4 GHz). Preliminary results from 15.0 GHz observations are also included.  相似文献   

19.
We present the results of an unbiased radio search for gravitational lensing events with image separations between 15 and 60 arcsec, which would be associated with clusters of galaxies with masses >1013–14 M. A parent population of 1023 extended radio sources stronger than 35 mJy with stellar optical identifications was selected using the FIRST radio catalogue at 1.4 GHz and the APM optical catalogue. The FIRST catalogue was then searched for companions to the parent sources stronger than 7 mJy and with separation in the range 15 to 60 arcsec. Higher-resolution observations of the resulting 38 lens candidates were made with the VLA at 1.4 and 5 GHz, and with MERLIN at 5 GHz in order to test the lens hypothesis in each case. None of our targets was found to be a gravitational lens system. These results provide the best current constraint on the lensing rate for this angular scale, but improved calculations of lensing rates from realistic simulations of the clustering of matter on the relevant scales are required before cosmologically significant constraints can be derived from this null result. We now have an efficient, tested observational strategy with which it will be possible to make an order-of-magnitude larger unbiased search in the near future.  相似文献   

20.
Solar flares observed in the 200 – 400 GHz radio domain may exhibit a slowly varying and time-extended component which follows a short (few minutes) impulsive phase and can last for a few tens of minutes to more than one hour. The few examples discussed in the literature indicate that such long-lasting submillimeter emission is most likely thermal bremsstrahlung. We present a detailed analysis of the time-extended phase of the 27 October 2003 (M6.7) flare, combining 1 – 345 GHz total-flux radio measurements with X-ray, EUV, and Hα observations. We find that the time-extended radio emission is, as expected, radiated by thermal bremsstrahlung. Up to 230 GHz, it is entirely produced in the corona by hot and cool materials at 7 – 16 MK and 1 – 3 MK, respectively. At 345 GHz, there is an additional contribution from chromospheric material at a few 104 K. These results, which may also apply to other millimeter–submillimeter radio events, are not consistent with the expectations from standard semiempirical models of the chromosphere and transition region during flares, which predict observable radio emission from the chromosphere at all frequencies where the corona is transparent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号