首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Ground water at the Norman Landfill Research Site is contaminated by a leachate plume emanating from a closed, unlined landfill formerly operated by the city of Norman, Oklahoma, Ground water contaminated by the leachate plume is known to be elevated in the concentration of many, organic and inorganic constituents. Specific conductance, alkalinity, chloride, dissolved organic carbon, boron, sodium, strontium, and deuterium in ground water are considered to be indicators of the leachate plume at this site.
Leaf samples of broad-leafed cottonwood, Populus deltoides , were collected from 57 sites around the closed landfill. Cottonwood, a phreatophyte or "well plant," functions as a & surrogate well and serves as a ground water quality sampler. The leaf samples were combusted to ash and analyzed by instrumental neutron activation for 35 elements and by prompt-gamma instrumental neutron activation, for boron. A monitoring well was located within a few meters of a sampled cottonwood tree at 15 of the 57 sites, and ground water samples were collected from these monitoring wells simultaneously with a leaf sample. The chemical analyses of the ground water and leaf samples from these 15 sites indicated that boron, bromine, sodium, and strontium concentrations in leaves were significantly correlated with leachate indicator constituents in ground water. A point-plot map of selected percentiles indicated high concentrations of boron, bromine, and sodium in leaf ash from sites downgradient of the most recent landfill and from older landfills nearby.
Data from leaf analysis greatly extended the known areal extent of the leachate plume previously determined from a network of monitoring wells and geophysical surveys. This phytosgeochemical study provided a cost-effective method for assessing the extent of a leachate plume from an old landfill. Such a method may be useful as a preliminary sampling tool to guide the design of hydrogeochemical and geophysical studies.  相似文献   

2.
Monitored natural attenuation is widely applied as a remediation strategy at hydrocarbon spill sites. Natural attenuation relies on biodegradation of hydrocarbons coupled with reduction of electron acceptors, including solid phase ferric iron (Fe(III)). Because arsenic (As) adsorbs to Fe‐hydroxides, a potential secondary effect of natural attenuation of hydrocarbons coupled with Fe(III) reduction is a release of naturally occurring As to groundwater. At a crude‐oil‐contaminated aquifer near Bemidji, Minnesota, anaerobic biodegradation of hydrocarbons coupled to Fe(III) reduction has been well documented. We collected groundwater samples at the site annually from 2009 to 2013 to examine if As is released to groundwater and, if so, to document relationships between As and Fe inside and outside of the dissolved hydrocarbon plume. Arsenic concentrations in groundwater in the plume reached 230 µg/L, whereas groundwater outside the plume contained less than 5 µg/L As. Combined with previous data from the Bemidji site, our results suggest that (1) naturally occurring As is associated with Fe‐hydroxides present in the glacially derived aquifer sediments; (2) introduction of hydrocarbons results in reduction of Fe‐hydroxides, releasing As and Fe to groundwater; (3) at the leading edge of the plume, As and Fe are removed from groundwater and retained on sediments; and (4) downgradient from the plume, patterns of As and Fe in groundwater are similar to background. We develop a conceptual model of secondary As release due to natural attenuation of hydrocarbons that can be applied to other sites where an influx of biodegradable organic carbon promotes Fe(III) reduction.  相似文献   

3.
The extent of natural attenuation is an important consideration in determining the most appropriate corrective action at sites where ground water quality has been impacted by releases of petroleum hydrocarbons or other chemicals. The objective of this study was to develop a practical approach that would evaluate natural attenuation based on easily obtained field data and field tested indicators of natural attenuation. The primary indicators that can he used to evaluate natural attenuation include plume characteristics and dissolved oxygen levels in ground water. Case studies of actual field sites show that plumes migrate more slowly than expected, reach a steady state, and decrease in extent and concentration when natural attenuation is occurring. Background dissolved oxygen levels greater than 1 to 2 mg/L and an inverse correlation between dissolved oxygen and contaminant levels have been identified through laboratory and field studies as key indicators of aerobic biodegradation. an important attenuation mechanism. Secondary indicators such as geochemical data, and more intensive methods such as contaminant mass balances, laboratory microcosm studies, and detailed ground water modeling can demonstrate natural attenuation as well. The recommended approach for evaluating natural attenuation is to design site assessment activities so that required data such as dissolved oxygen levels and historical plume flow path concentrations are obtained. With the necessary data, the primary indicators should be applied to evaluate natural attenuation. II the initial evaluation suggests that natural attenuation is a viable corrective action alternative, then a monitoring plan should be implemented to verify the extent of natural attenuation.  相似文献   

4.
Evaluation of BTEX Remediation by Natural Attenuation at a Coastal Facility   总被引:1,自引:0,他引:1  
Natural attenuation has emerged as a potential alternative for remediating sites contaminated with fuel hydrocarbons. This paper examines the viability of using attenuation through natural processes to remediate ground water at an industrial facility. The research combined field assessments with data analysis and modeling to evaluate plume stability and predict remediation times. Field data on natural attenuation indicate that BTEX contamination at the site is being attenuated at rates that vary within the range of 0.0001 to 0.0073/day. Stability analyses confirm that the BTEX plume has reached steady state. An analysis on mass flux showed that between 1979 and 1996, 95,000 pounds of BTEX were lost via biodegradation, while 8000 pounds were lost through other mechanisms. A first-order biodegradation rate of 0.0002/day for BTEX was obtained from the change in the total mass of dissolved BTEX with time. Cleanup times in excess of 200 years for the site were estimated using analytical modeling of natural attenuation, which agreed well with the remediation times estimated using the attenuation rates calculated for the site.  相似文献   

5.
6.
Biogeochemical evolution of a landfill leachate plume, Norman, Oklahoma   总被引:1,自引:0,他引:1  
Leachate from municipal landfills can create groundwater contaminant plumes that may last for decades to centuries. The fate of reactive contaminants in leachate-affected aquifers depends on the sustainability of biogeochemical processes affecting contaminant transport. Temporal variations in the configuration of redox zones downgradient from the Norman Landfill were studied for more than a decade. The leachate plume contained elevated concentrations of nonvolatile dissolved organic carbon (NVDOC) (up to 300 mg/L), methane (16 mg/L), ammonium (650 mg/L as N), iron (23 mg/L), chloride (1030 mg/L), and bicarbonate (4270 mg/L). Chemical and isotopic investigations along a 2D plume transect revealed consumption of solid and aqueous electron acceptors in the aquifer, depleting the natural attenuation capacity. Despite the relative recalcitrance of NVDOC to biodegradation, the center of the plume was depleted in sulfate, which reduces the long-term oxidation capacity of the leachate-affected aquifer. Ammonium and methane were attenuated in the aquifer relative to chloride by different processes: ammonium transport was retarded mainly by physical interaction with aquifer solids, whereas the methane plume was truncated largely by oxidation. Studies near plume boundaries revealed temporal variability in constituent concentrations related in part to hydrologic changes at various time scales. The upper boundary of the plume was a particularly active location where redox reactions responded to recharge events and seasonal water-table fluctuations. Accurately describing the biogeochemical processes that affect the transport of contaminants in this landfill-leachate-affected aquifer required understanding the aquifer's geologic and hydrodynamic framework.  相似文献   

7.
The impact on groundwater imparted by the infiltration of high dissolved organic carbon (DOC) leachate from capped, unlined landfills can be attenuated by biogeochemical reactions beyond the waste source, although such reactive loss in the aquifer is difficult to distinguish from conservative advective dispersion. Compound-specific measurement of δ(13)C in carbon species, including CH(4), dissolved inorganic carbon (DIC), and the major DOC compounds (acetate, humic acid, and fulvic acid) provides a constraint in this assessment that can assist in exercises of modeling and prediction of leachate transport. The Trail Road municipal landfill near Ottawa, Ontario, Canada, hosts an unlined sector which produces a highly enriched leachate (DOC >4500 mg/L) that provides a good site to examine reactive attenuation within the receptor aquifer. Acetate, a sentinel component of leachate DOC (~1000 mg C/L), is absent in impacted groundwater. Mass balance calculations together with reaction modeling suggest continued acetate fermentation with calcite control on DIC and δ(13)C(DIC) evolution. In groundwater within 50 m of the landfill, methane concentrations are elevated (~10 mg/L), consistent with acetate fermentation, whereas δ(13)C(CH4) measurements in deeper groundwater range down to -51‰ compared with -60‰ in the landfill demonstrating oxidative loss. DOC in the deep aquifer is remarkably depleted to values less than -40‰ suggesting methanotrophic bacteria selectively consume isotopically light CH(4) to fix carbon. Continued reaction of leachate DOC in groundwater is demonstrated by evolution away from conservative mixing lines on diagrams of δ(13)C vs. concentrations of DIC and DOC.  相似文献   

8.
A field-scale demonstration project was conducted to evaluate the capability of eastern cottonwood trees (Populus deltoides) to attenuate trichloroethene (TCE) contamination of ground water. By the middle of the sixth growing season, trees planted where depth to water was <3 m delivered enough dissolved organic carbon to the underlying aquifer to lower dissolved oxygen concentrations, to create iron-reducing conditions along the plume centerline and sulfate-reducing or methanogenic conditions in localized areas, and to initiate in situ reductive dechlorination of TCE. Apparent biodegradation rate constants for TCE along the centerline of the plume beneath the phytoremediation system increased from 0.0002/d to 0.02/d during the first six growing seasons. The corresponding increase in natural attenuation capacity of the aquifer along the plume centerline, from 0.0004/m to 0.024/m, is associated with a potential decrease in plume-stabilization distance from 9680 to 160 m. Demonstration results provide insight into the amount of vegetation and time that may be needed to achieve cleanup objectives at the field scale.  相似文献   

9.
A pilot‐scale zero valent iron (ZVI) Permeable Reactive Barrier (PRB) was installed using an azimuth‐controlled ‐vertical hydrofracturing at an industrial facility to treat a chlorinated Volatile Organic Compound (VOC) plume. Following ZVI injection, no significant reduction in concentration was observed to occur with the exception of some multilevel monitoring wells, which also showed high levels of total organic carbon (TOC). These patterns suggested that the zero valent iron was not well distributed in the PRB creating leaky conditions. The geochemical data indicated reducing conditions in these areas where VOC reduction was observed, suggesting that biotic processes, associated to the guar used in the injection of the iron, could be a major mechanism of VOC degradation. Compound‐Specific Isotope Analysis (CSIA) using both carbon and chlorine stable isotopes were used as a complementary tool for evaluating the contribution of abiotic and biotic processes to VOC trends in the vicinity of the PRB. The isotopic data showed enriched isotope values around the PRB compared to the isotope composition of the VOC source confirming that VOC degradation is occurring along the PRB. A batch experiment using site groundwater collected near the VOC source and the ZVI used in the PRB was performed to evaluate the site‐specific abiotic isotopic fractionation patterns. Field isotopic trends, typical of biodegradations were observed at the site and were different from those obtained during the batch abiotic experiment. These differences in isotopic trends combined with changes in VOC concentrations and redox parameters suggested that biotic processes are the predominant pathways involved in the degradation of VOCs in the vicinity of the PRB.  相似文献   

10.
The influence of source zone concentration reduction on solute plume detachment and recession times in fractured rock was investigated using new semianalytical solutions to transient solute transport in the presence of advection, dispersion, sorption, matrix diffusion, and first-order decay. Novel aspects of these solutions are: (1) the source zone concentration behavior is simulated using a constant concentration with the option for either an instantaneous reduction to zero concentration or an exponentially decaying source zone concentration initiated at some time (t*) after the source is introduced, and (2) different biodegradation rates in the fracture and rock matrix. These solutions were applied for sandstone bedrock and revealed that biodegradation in the matrix, not the fracture, may be the most significant attenuation mechanism and therefore may dictate remediation time scales. Also, instantaneous and complete source concentration reduction in aged plumes may not be beneficial with respect to plume response because back-diffusion can sustain plume migration for long periods of time. Moderate source zone concentration reduction has a similar impact on the rate of advance of the leading edge of the plume as aggressive concentration reduction. If the source zone concentration reduction half-life is less than the plume decay half-life, then volatile organic compound (VOC) mass sequestered in the rock matrix will ultimately dictate plume persistence and not the presence of the source zone.  相似文献   

11.
We examined the spatiotemporal changes of microbial communities in relation to hydrochemistry variation over time and space in an aquifer polluted by landfill leachate (Banisveld, The Netherlands). Sampling in 1998, 1999, and 2004 at the same time of the year revealed that the center of the pollution plume was hydrochemically rather stable, but its upper fringe moved to the surface over time, especially at distances greater than 40 m away from the landfill. Complex and spatiotemporal heterogeneous bacterial and eukaryotic communities were resolved using denaturing gradient gel electrophoresis (DGGE) of 16S and 18S rRNA gene fragments. Large fluctuations were noted in the eukaryotic communities associated with strongly polluted and cleaner groundwater. The bacterial communities in strongly polluted samples were different from those in cleaner groundwater in 1998 and 1999, but no longer in 2004. The temporal variation in microbial communities was greater than the spatial variation: the 1998 bacteria communities in strongly polluted groundwater were more related to each other than to those recovered in 1999 and 2004. During the three sampling periods, the bacterial communities were more stable close to the landfill than at larger distances from the landfill. Overall, pollution appears to have only a minor influence on microbial communities. The considerable spatiotemporal variation in microbial community composition may contribute to better biodegradation of pollutants. Designing management strategies for natural attenuation of aquifer pollution will benefit from further long‐term, high‐density monitoring of changes in microbial communities, their diversity and physiological properties, in relation to changes in hydrochemistry.  相似文献   

12.
Ground water samples collected from the Norman Landfill research site in central Oklahoma were analyzed as part of the U.S. Geological Survey (USGS) Toxic Substances Hydrology Program's national reconnaissance of pharmaceuticals and other organic waste water contaminants (OWCs) in ground water. Five sites, four of which are located downgradient of the landfill, were sampled in 2000 and analyzed for 76 OWCs using four research methods developed by the USGS. OWCs were detected in water samples from all of the sites sampled, with 22 of the 76 OWCs being detected at least once. Cholesterol (a plant and animal steroid), was detected at all five sites and was the only compound detected in a well upgradient of the landfill. N,N-diethyltoluamide (DEBT used in insect repellent) and tri(2-chloroethyl) phosphate (fire-retardant) were detected in water samples from all four sites located within the landfill-derived leachate plume. The sites closest to the landfill had more detections and greater concentrations of each of the detected compounds than sites located farther away. Detection of multiple OWCs occurred in the four sites located within the leachate plume, with a minimum of four and a maximum of 17 OWCs detected. Because the landfill was established in the 1920s and closed in 1985, many compounds detected in the leachate plume were likely disposed of decades ago. These results indicate the potential for long-term persistence and transport of some OWCs in ground water.  相似文献   

13.
Vertical flow filters are containers filled with porous medium that are recharged from top and drained at the bottom, and are operated at partly saturated conditions. They have recently been suggested as treatment technology for groundwater containing volatile organic compounds (VOCs). Numerical reactive transport simulations were performed to investigate the relevance of different filter operation modes on biodegradation and/or volatilization of the contaminants and to evaluate the potential limitation of such remediation mean due to volatile emissions. On the basis of the data from a pilot‐scale vertical flow filter intermittently fed with domestic waste water, model predictions on the system’s performance for the treatment of contaminated groundwater were derived. These simulations considered the transport and aerobic degradation of ammonium and two VOCs, benzene and methyl tertiary butyl ether (MTBE). In addition, the advective‐diffusive gas‐phase transport of volatile compounds as well as oxygen was simulated. Model predictions addressed the influence of depth and frequency of the intermittent groundwater injection, degradation rate kinetics, and the composition of the filter material. Simulation results show that for unfavorable operation conditions significant VOC emissions have to be considered and that operation modes limiting VOC emissions may limit aerobic biodegradation. However, a suitable combination of injection depth and composition of the filter material does facilitate high biodegradation rates while only little VOC emissions take place. Using such optimized operation modes would allow using vertical flow filter systems as remediation technology suitable for groundwater contaminated with volatile compounds.  相似文献   

14.
Landfills are the final depositories for a wide range of solid waste from both residential and commercial sources, and therefore have the potential to produce leachate containing many organic compounds found in consumer products such as pharmaceuticals, plasticizers, disinfectants, cleaning agents, fire retardants, flavorings, and preservatives, known as emerging contaminants (ECs). Landfill leachate was sampled from landfill cells of three different age ranges from two landfills in Central Oklahoma. Samples were collected from an old cell containing solid waste greater than 25 years old, an intermediate age cell with solid waste between 16 and 3 years old, and operating cell with solid waste less than 5 years old to investigate the chemical variability and persistence of selected ECs in landfill leachate of differing age sources. Twenty‐eight of 69 analyzed ECs were detected in one or more samples from the three leachate sources. Detected ECs ranged in concentration from 0.11 to 114 μg/L and included 4 fecal and plant sterols, 13 household\industrial, 7 hydrocarbon, and 4 pesticide compounds. Four ECs were solely detected in the oldest leachate sample, two ECs were solely detected in the intermediate leachate sample, and no ECs were solely detected in the youngest leachate sample. Eleven ECs were commonly detected in all three leachate samples and are an indication of the contents of solid waste deposited over several decades and the relative resistance of some ECs to natural attenuation processes in and near landfills.  相似文献   

15.
Sulfate reducing conditions are widely observed in groundwater plumes associated with petroleum hydrocarbon releases. This leads to sulfate depletion in groundwater which can limit biodegradation of hydrocarbons (usually benzene, toluene, ethylbenzene, xylenes [BTEX] compounds) and can therefore result in extended timeframes to achieve groundwater cleanup objectives by monitored natural attenuation. Under these conditions, sulfate addition to the subsurface can potentially enhance BTEX biodegradation and facilitate enhanced natural attenuation. However, a delivery approach that enables effective contact with the hydrocarbons and is able to sustain elevated and uniform sulfate concentrations in groundwater remains a key challenge. In this case study, sulfate addition to a groundwater plume containing predominantly benzene by land application of agricultural gypsum and Epsom salt is described. Over 4 years of groundwater monitoring data from key wells subjected to pilot‐scale and site‐wide land application events are presented. These are compared to data from pilot testing employing liquid Epsom salt injections as an alternate sulfate delivery approach. Sulfate land application, sulfate retention within the vadose zone, and periodic infiltration following ongoing precipitation events resulted in elevated sulfate concentrations (>150 mg/L) in groundwater that were sustained over 12 months between application events and stimulated benzene biodegradation as indicated by declines in dissolved benzene concentration, and compound‐specific isotope analysis data for carbon in benzene. Long‐term groundwater benzene concentration reductions were achieved in spite of periodic rebounds resulting from water table fluctuations across the smear zone. Land application of gypsum is a potentially cost‐effective sulfate delivery approach at sites with open, unpaved surfaces, relatively permeable geology, and shallow hydrocarbon impacts. However, more research is needed to understand the fate and persistence of sulfate and to improve the likelihood of success and effectiveness of this delivery approach.  相似文献   

16.
The natural attenuation behavior of a ground water contaminant plume containing chromium and chlorinated ethenes in glaciated sediments was assessed using traditional and nontraditional methods. The mixed waste is transported through and attenuated within an estuarine influenced ground water aquifer of spatially varying redox character and organic carbon content. Contaminant fate and speciation were assessed as a function of geochemical conditions. Total, speciation-based, and sequential chemical extraction analyses were performed to determine contaminant partitioning and the redox capacity of the aquifer. Chromium speciation and partitioning were correlated with the reductive capacity and redox conditions of the aquifer sediments spatially distributed within the aquifer. Reductive dechlorination and partitioning of chlorinated ethenes were correlated with the organic carbon content and redox conditions of the aquifer sediments. The data showed that sharp redox gradients existed within the aquifer. Active reduction and retardation of both chromium and chlorinated ethenes was exhibited. The aqueous hexavalent chromium concentrations decreased to near nondetect levels in the vicinity of the receptor, whereas degradation products of higher-order chlorinated ethenes increased as a fraction of the total chlorinated ethene concentrations along the length of the plume. The potential for competition for reducing power under specific cases within the aquifer was suggested by the data, highlighting the need to include contaminant interactions in natural attenuation assessments.  相似文献   

17.
This work presents analytical models which are able to predict contours of concentrations and isotope ratios of organic pollutants in homogeneous aquifers. Four analytical solutions of the advective–dispersive transport equation for reactive transport from the literature differing in assumptions regarding biodegradation kinetics were used. Stable isotope ratios are computed after modelling the individual reactive transport of isotopic species in the aquifer, which respond differently to fractionation by biodegradation or sorption. The main finding of this study is that the isotope ratios in the plumes are very sensitive to the assumptions underlying the biodegradation kinetics in the models. When biodegradation occurs throughout the core of the plume as first-order reaction, the transversal gradients in isotope ratios are smooth. When biodegradation occurs in a bi-molecular reaction with an electron acceptor (modelled by double-Monod kinetics), steep transversal isotope gradients are predicted. When the reaction rates approach instantaneous reaction along the plume fringes, isotope shifts in the core of the plume disappear. A model incorporating plume and fringe degradation produces the most plausible predictions of isotope ratios in this study. It is shown furthermore that isotope fractionation by sorption causes an even different pattern of isotope ratios, with positive shifts restricted to near the forerunning front of an expanding plume. The models developed in this work can serve for the validation of numerical models and may be incorporated in natural attenuation support systems such as e.g. BIOSCREEN.  相似文献   

18.
The progressive packer/zone sampling method was used to identify the bottom of a plume of volatile organic compounds (VOCs) in the parts-per-million (ppm) range using one well in each of three separate locations. The method involves progressively drilling a 20-foot length of borehole through casing, setting an inflatable packer at the top of the drilled zone, purging the zone of three volumes of water using the airlift method, sampling the zone in situ through the packer string using a bailer, then repeating the procedure.
A plume consisting of chlorinated VOCs, alcohols, and vinyl chloride occurs in a low-yielding fractured bedrock aquifer located in the Passaic Formation at a site in central New Jersey. The thickness of the plume in total VOC concentrations exceeding 1 ppm was determined using the progressive packer/zone sampling method to a depth of 200 feet. The first borehole was completed as a monitoring well in the "hottest" zone encountered during testing. Additional wells were then clustered with this exploratory well to delineate the plume in the parts-per-billion (ppb) range. Cross contamination from previously sampled zones was not a problem as long as total VOCs in the ppm range were targeted and the sample interval was properly purged.
Instead of using a multiple well cluster consisting of an indefinite number of wells to determine the bulk thickness of a plume at a specific location, information from one borehole may suffice during the exploratory phase. Costs to the client and cross contamination potential to the aquifer can be minimized by limiting the number of boreholes needed for vertical delineation.  相似文献   

19.
Soil-gas surveys are becoming more widely accepted as a tool for the preliminary determination of the extent of soil and ground water contamination by volatile organic compounds (VOCs). The interpretation of the results of published soil-gas surveys has been necessarily limited and qualitative due to a lack of adequate models. There has been considerable effort in the recent past to characterize the transport and fate of pesticides in soil. However, the behavior of pesticides generally differ substantially from those of VOCs.
This paper presents a computer model developed to simulate the diffusive transport of VOC vapor through unsaturated soils using a two-dimensional, finite-difference, solution to Fick's second law of diffusion. An effective diffusion coefficient that incorporates the effects of tortuosity, moisture content, and soil organic carbon content is computed. Although the model has not been validated due to the unavailability of adequate field or laboratory data, nevertheless, sensitivity analyses demonstrate the importance of soil moisture and, secondarily, organic matter content in controlling the migration of VOC vapor through the unsaturated zone. The interpretation of soil-gas surveys can be complicated by unknown spatial heterogeneities in soil moisture and organic carbon content, temporal variations in moisture content, extent of contaminant migration as a non-aqueous phase liquid and by the unknown extent of VOC liquid and contaminated ground water.  相似文献   

20.
Remediation of ground water pollution at old landfills with no engineered leachate collection system is a demanding and costly operation. It requires control of the landfill body, since the majority of the pollutants are still present in the landfilled waste for decades after the site has been closed. However removing the source is an attractive approach to managing leachate plumes. Natural attenuation has been implemented for petroleum hydrocarbon plumes and chorinated solvent plumes, primarily in the United States. Natural attenuation has not yet gained a foothold with respect to leachate plumes, however. Based on the experience gained from 10 years of research on two Danish landfills, it is suggested that natural attenuation is a feasible approach but is more complicated and demanding than in the case of petroleum hydrocarbons and chlorinated solvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号