首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract
Determination of chemical constituent ratios allows distinction between two salinization mechanisms responsible for shallow saline ground water and vegetative-kill areas in parts of west Texas. Mixing of deep-basin (high Cl) salt water and shallow (low Cl) ground water results in saline waters with relatively low Ca/Cl, Mg/Cl, SO44/ Cl, Br/Cl, and NO3/Cl ratios. In scattergrams of major chemical constituents vs. chloride, plots of these waters indicate trends with deep-basin brines as high Cl end members. Evaporation of ground water from a shallow water table, in contrast, results in saline water that has relatively high Ca/Cl, Mg/Cl, SO4/Cl, and Br/CL ratios. Trends indicated by plots of this water type do not coincide with trends indicated by plots of sampled brines. Leaching of soil nitrate in areas with a shallow water table accounts for high NO3 concentrations in shallow ground water.  相似文献   

2.
The formation and development of a salt plume (salinity up to 800 mg Cl 1−1) in the inner part of the Coastal Plain aquifer of Israel is analyzed. Massive groundwater exploitation during the 1950s caused a large drop in the water level and formation of a hydrologic depression in the Be'er Toviyya-Kefar Warburg area. The depression reached a maximal depth during the late 1960s; thereafter a reduction in the rate of pumpage led to restoration of water levels and shallowing of the depression, until its complete disappearance towards the end of the 1980s. A spot of high salinity first appeared in 1956, following a deep drawdown in the water levels. This saline plume has been continuously expanding with increasing salinity concentrations (200–800 mg Cl 1−1) in its center. The average rate of radial expansion was about 50 m year−1. The expansion and salinization did not cease as the depression disappeared. Rather, equalization of water levels in wells situated within the plume area with those of situated along its margins resulted in the salinization of the latter within a period of 1 year.

Mass balances for water and chloride contents were made for the period 1967–1990. Taking into consideration the storage change, pumpage, natural replenishment and artificial recharge, the lateral inflow to the depression is estimated as 60 × 106 m3. Upon addition of the chloride balance, and taking into consideration the chloride concentrations of the surrounding fresh water and the apparent possible end-member of the saline source (based on geochemical considerations), the saline inflow is estimated as (40–60) × 106 m3. These estimates indicate that a large amount of saline water penetrated into the aquifer, of about half of the natural replenishment of the study area, with an estimated salinity of 1900–2700 mg Cl 1−1.

It is suggested that the salt plume was formed as a result of a drop in water level combined with a flow of underlying saline water bodies from deeper strata. The chemical composition of the groundwater points to the existence of two saline water bodies of Ca-chloride composition and a marine Br/Cl ratio: (1) saline water with low Na/Cl (0.6), So4/Cl, and B/Cl ratio; (2) saline water with higher Na/Cl (> 0.6), So4/Cl, and B/Cl ratios. These chemical compositions resemble Ca-chloride saline waters found in other locations in the Coastal Plain aquifer and in underlying formations. The saline water bodies may occur in either pockets at the bottom of the aquifer or lumachelle and sandstone layers of high hydraulic conductivity in underlying sediments.  相似文献   


3.
Characterization and identification of na-cl sources in ground water   总被引:6,自引:0,他引:6  
Elevated concentrations of sodium (Na+) and chloride (Cl-) in surface and ground water are common in the United States and other countries, and can serve as indicators of, or may constitute, a water quality problem. We have characterized the most prevalent natural and anthropogenic sources of Na+ and Cl- in ground water, primarily in Illinois, and explored techniques that could be used to identify their source. We considered seven potential sources that included agricultural chemicals, septic effluent, animal waste, municipal landfill leachate, sea water, basin brines, and road deicers. The halides Cl-, bromide (Br), and iodide (I) were useful indicators of the sources of Na+-Cl- contamination. Iodide enrichment (relative to Cl-) was greatest in precipitation, followed by uncontaminated soil water and ground water, and landfill leachate. The mass ratios of the halides among themselves, with total nitrogen (N), and with Na+ provided diagnostic methods for graphically distinguishing among sources of Na+ and Cl- in contaminated water. Cl/Br ratios relative to Cl- revealed a clear, although overlapping, separation of sample groups. Samples of landfill leachate and ground water known to be contaminated by leachate were enriched in I and Br; this provided an excellent fingerprint for identifying leachate contamination. In addition, total N, when plotted against Cl/Br ratios, successfully separated water contaminated by road salt from water contaminated by other sources.  相似文献   

4.
Electrical conductivity (EC) logs were obtained by both open‐borehole logging and passive multilevel sampling (MLS) in an observation borehole penetrating the Coastal Aquifer in Tel Aviv, Israel. Homogeneous vertical velocities for a 70‐m thick subaquifer were approximated from each profile using a steady‐state advection‐diffusion model. The open‐borehole log led to an overestimation of the steady‐state upward advective flux of deep brines (vertical velocity of 0.95 cm/yr as compared to 0.07 cm/yr for the MLS profile). The combination of depth‐dependent data and the suggested simple modeling approach comprises a method for assessing the vertical location of salinity sources and the nature of salt transport from them (i.e., advective vs. diffusive). However, in this case, the easily obtained open‐borehole logs should not be used for collecting depth‐dependent data.  相似文献   

5.
Differences in the impact of irrigation with freshwater versus wastewater on the underlying shallow groundwater quality were investigated in the Coastal Aquifer of Israel. Seven research boreholes were drilled to the top-most 3–5 m of the saturated zone (the water table region-WTR) in the agricultural fields. The unsaturated zone and the WTR below the irrigated fields consist mainly of clayey sands, while the main aquifer comprises mainly of calcareous sandstones and sands. We show that the salinity and composition of the groundwater at the WTR are highly variable over a distance of less than 1 km and are controlled by the irrigating water and the processes in the overlying unsaturated zone. Tritium data in this groundwater (4.6 tritium units (TU)) support that these water are modern recharge. The water at the WTR is more saline and has a different chemical composition relative to the overlying irrigation water. High SAR values (sodium adsorption ratio) in wastewater irrigation lead to absorption of Na+ onto the clay and release of Ca2+ into the recharging water, resulting in low Na/Cl (0.4 compared to 1.2 in the wastewater) and high Ca/Cl ratios. In contrast, in the freshwater-irrigated field the irrigation water pumped from the aquifer (Na/Cl=0.9; SAR=0.6) is modified into Na-rich groundwater (Na/Cl=2.0) due to reverse base-exchange reactions. The high NO3 concentration (>100 mg/l) in the WTR below both fields is derived from the agricultural activities. In the freshwater field, the source of NO3 is fertilizer leachates, whereas in the wastewater field, where less fertilizers are applied, nitrate is probably derived from nitrification of the NH4 in the wastewater. Some of the original inorganic nitrogen in the wastewater is consumed by the agricultural plants, resulting in a lower inorganic-N/Cl ratio in the WTR as compared to that in the wastewater. This study demonstrates the important role of the composition of irrigation water, combined with lithology and land use, in determining the quality of the water that recharge the aquifer below agricultural fields.  相似文献   

6.
In order to identify the origin of saline groundwater in the eastern part of Jeju volcanic island, Korea, a hydrogeochemical and isotopic study has been carried out for 18 observation wells located in east and southeast coastal regions. The total dissolved solid contents of groundwaters are highly variable (77–21,782 mg/l). Oxygen, hydrogen, sulfur, and strontium isotopic data clearly show that the saline water results from mixing of groundwater with seawater. Strontium isotopic compositions and Br/Cl and I/Cl ratios strongly suggest that the source of salinity is modern seawater intrusion. Hydrogeochemical characteristics based on bivariate diagrams of major and minor ions show that changes in the chemical composition of groundwater are mainly controlled by the salinization process followed by cation-exchange reactions. The highly permeable aquifers at the east coastal region are characterized by low hydraulic gradient and discharge rate and high hydraulic conductivity as compared with other regions. These properties enhance the salinization of groundwater observed in the study area. Based on the Cl, Br, and δ18O data, seawater was determined to have intruded inland some 2.5 km from the coastline. Considering the poor correlation of sampling depth and Cl concentrations observed, the position of seawater-freshwater interface is not uniformly distributed in the study area, due to heterogeneities of the basaltic aquifers.  相似文献   

7.
ABSTRACT

The regional groundwater groups of central Israel include:

  1. bicarbonate waters representing the replenishment areas;

  2. chloride waters representing the confined and the base-level zones;

  3. sulfate waters of the intermediate zones (fig. 2).

These water types were found to fit broadly into five hydrogeographical groups.

The chemical evolution of the ground waters is a function of: a) lithology and solubility of the aquifer components and of the surrounding strata; b) mixing between groundwater bodies of different composition. The first factor is important mainly within the confined zones while the latter is conspicuous in the Rift Valley and adjacent areas.

Groundwater mixing within the Dead Sea basin produces waters with Mg > Na > Ca, and Cl ? SO > HCO3. Other brines show the order: Ca > Na > Mg. All these brines show compositions different from ocean water.  相似文献   

8.
Salinization of a fresh palaeo-ground water resource by enhanced recharge   总被引:2,自引:0,他引:2  
Deterioration of fresh ground water resources caused by salinization is a growing issue in many arid and semi-arid parts of the world. We discuss here the incipient salinization of a 10(4) km2 area of fresh ground water (<3,000 mg/L) in the semiarid Murray Basin of Australia caused by widespread changes in land use. Ground water 14C concentrations and unsaturated zone Cl soil water inventories indicate that the low salinity ground water originated mainly from palaeo-recharge during wet climatic periods more than 20,000 years ago. However, much of the soil water in the 20 to 60 m thick unsaturated zone throughout the area is generally saline (>15,000 mg/L) because of relatively high evapotranspiration during the predominantly semiarid climate of the last 20,000 years. Widespread clearing of native vegetation over the last 100 years and replacement with crops and pastures leads to enhancement of recharge rates that progressively displace the saline soil-water from the unsaturated zone into the ground water. To quantify the impact of this new hydrologic regime, a one-dimensional model that simulates projected ground water salinities as a function of depth to ground water, recharge rates, and soil water salt inventory was developed. Results from the model suggest that, in some areas, the ground water salinity within the top 10 m of the water table is likely to increase by a factor of 2 to 6 during the next 100 years. Ground water quality will therefore potentially degrade beyond the point of usefulness well before extraction of the ground water exhausts the resource.  相似文献   

9.
Subsurface K‐rich brines are important mineral resources for fertilizer production while the evolution of such brines is poorly documented. In the Sichuan Basin in southwest China, they are found mainly in the Middle and Lower Triassic marine carbonate aquifers. Total dissolved solids of the brines range from 176 to 378 g/L and K concentrations, from 1.9 to 53.3 g/L. We found that the brines are mainly of Cl‐Na type, while Ba is absent in the brines. Comparison of the brine samples with both the trajectories of ions and the newly proposed trajectories of ion ratios of evaporated seawater suggests that the brines are enriched in Ca, Sr, Li, and I, depleted in SO4 and Mg, and neither enriched nor depleted in Cl and Na. These brines underwent four evolutionary periods: (1) deposition of marine rocks, (2) deposition of continental clastics, (3) tectonic deformation, and (4) rock erosion. Precipitation of salt minerals, dolomitization, sulfate reduction, and recrystallization during the first two periods are responsible for the enrichment and depletion of the chemical constituents of the brines. Extremely high K concentrations in two wells, both tapping the Middle Triassic Leikoupo carbonate aquifers, are attributed to the subsurface dissolution of potash salts during the migration of the brines to the anticlines formed during the third period in the Paleogene age. Saline and salty springs emanate from the outcropping carbonates in the river valleys in some anticlines in the eastern basin due to incongruent dissolution of the salt‐bearing carbonates during the fourth period.  相似文献   

10.
Fresh and mineral waters from the eastern margin of the Suez Rift Valley are described. They include a fair number of sources that resemble the mineral waters in the Jordan Rift Valley. The term Tiberias-Farun water is thus suggested to describe them. They are characterized compositionally by Cl > Na (in equiv.), the presence of NaCl and MgCl2, a Cl/Br ratio (by weight) around 150, elevated radium and H2S content, elevated temperature, a light stable-isotope composition and high carbon-14 age.

The Tiberias-Farun waters are suggested to have originated from entrapped seawater that gradually changed in composition by interaction with aquifer rocks. Such changes were demonstrated to take place in the laboratory experiments.  相似文献   


11.
A six year field experiment has shown that a sand-bentonite mixture used to seal monitoring wells in aquitards contributes solutes to the ground water sampled from these wells. Monitoring wells were installed at field sites with hydraulic conductivity (K) ranging from 5 × 10 -9 m/s to 3 × 1011 m/s. In most cases the boreholes remained dry during installation which allowed the placement of a dry powdered bentonite/sand mixture tagged with potassium bromide (KBr) to seal and separate sampling points. Over six years, wells were sampled periodically and ground-water samples were analyzed for Br and Cl and other major ions. Typical Br results ranged from 10 mg/1 to 35 mg/1 in the first 700 days, as compared to an estimated initial concentration in the seal material of about 75 mg/1. After six years the bromide concentrations had decreased to between 3 mg/1 and 5 mg/1. The total mass of Br removed in six years is less than 50% of that placed; therefore the contamination effects, although considerably diminished, persist. The trends of Br, Cl, Na, and SO4 indicate that varying degrees of contamination occur. These data show that the materials used to seal monitoring wells in aquitards can have a significant and long-lasting impact on the chemistry of the water in the wells.  相似文献   

12.
Chemical studies have been carried out on a number of water wells from the Dibdiba Formation northeast of Kuwait. Water salinity of this formation ranges between 3,300 mg/l to 7,000 mg/l, increasing with depth. The water entrapped in Dibdiba Formation is mainly sodium chloride type which can be differentiated into three different groups according to the ranges of concentration of the main cations and anions. These groups are: (3331113) sodium chloride water type in which Cl > Na, group (3333113) sodium chloride water type in which Na > Cl. In both groups the sequence of dominant cations is Na > Ca > Mg. Group (3333111) sodium chloride water type has Na > Cl and the sequence of dominant cations is Na > Mg > Ca. Chemical ratios of Ca/Mg, Na/Cl, and C1/HCO3 were worked out for Dibdiba ground water. The ratio of Ca/Mg Dibdiba Formation ranges from 0.4 to 8.58, the ratio of Na/Cl ranges between 0.98 to 1.33, and the ratio of C1/HCO3 is 232. A plot of chemical analysis on a trilinear diagram shows that Dibdiba Formation ground-water chemical properties are dominated by alkalies (Na > Ca) and strong acid (Cl > SO4). Water chemistry may reflect the history of the flow path, indicating regional flow as shown by increasing Na+, Cl-, SO4 and where Ca+, Mg+ achieve equilibrium.  相似文献   

13.
新疆博斯腾湖水盐变化及其影响因素探讨   总被引:16,自引:5,他引:11  
李卫红  袁磊 《湖泊科学》2002,14(3):223-227
在博斯腾湖水文和水化学实测资料的基础上,研究了博斯腾湖水盐的年际和年内变化。近40年来,水质年际变化经历了好→中→差→中的过程;年内变化与区内最大补给源开都河不同季节河流来水量变化以及湖周农田排盐水等因素直接相关,而湖水的矿化度与水位变化呈负相关。对湖水主要离子含量变化特点和湖区矿化度变化规律的研究表明,湖水补给源及湖水循环状况是影响湖水水质变化的主要因素。  相似文献   

14.
Typical Ca---Cl brines occur in crystalline and metamorphic rocks below freshwater horizons at various localities in Sweden and Finland. Total dissolved solids (TDS) range in concentration between 2 and 120 gl−1 and have long been thought to derive from water-rock interactions. The relationships between Na, Cl and Br in these brines suggest, however, that they were derived from freezing of seawater during glacial periods. The brines were subsequently diluted by meteoric waters and their Ca/Mg ratio was increased through water-rock interactions in the subsurface. The hydrogeological model for both the formation of freeze-derived marine brines and their lateral intrusion involves restricted inland marine basins in recent and subrecent polar climatic belts. Seawater in such basins gradually freezes in response to glaciation. The solutes which concentrate in the remaining water body are residual after precipitation of a sequence of minerals which include carbonates, mirabilite and hydrohalite. Hydraulic pressure of the growing ice sheet over the frozen seas is gradually added to the ambient hydrostatic pressure exerted on the brines. This, together with their increased density, increases the intrusional potential of the brines. As the land ice cannot exert hydraulic pressure on continental groundwater in the aquifers, the balance of pressure favours deep landward intrusion of brines. Post-glacial processes cause the subsurface dilution and replacement of the brines both by seawater and fresh waters. The presence of such brines also far from present-day coastal settings reflects the shifting of coastlines as a result of isostatic movements and eustatic sea-level changes associated with glaciation and deglaciation.  相似文献   

15.
Allen DM 《Ground water》2004,42(1):17-31
Stable isotopes of 18O and 2H in water, and 34S and 18O in dissolved SO4, are used to verify the interpretation of the chemical evolution and proposed sources of salinity for two islands that have undergone postglacial rebound. Results for delta18O and delta34S in dissolved SO4 on the Gulf Islands, southwest British Columbia, Canada, suggest a three-component mixing between (1) atmospheric SO4 derived largely from recharge of meteoric origin, (2) modern marine SO4 associated with either modern-day salt water intrusion or Pleistocene age sea water, and (3) terrestrial SO4. The age of the marine SO4 is uncertain based on the geochemistry and SO4 isotopes alone. Two options for mixing of saline ground waters are proposed--either between current-day marine SO4 and atmospheric SO4, or between older (Pleistocene age) marine SO4 and atmospheric SO4, delta18O and delta2H compositions are relatively consistent between both islands, with a few samples showing evidence of mixing with water that is a hybrid mixture of Fraser River water and ocean water. The isotopic composition of this hybrid water is approximately delta18O = 10 per thousand. delta18O and delta2H values for many saline ground waters plot close to the global meteoric water line, which is distinctly different from the local meteoric water line. This suggests a meteoric origin for ground waters that is different from the current isotopic composition of meteoric waters. It is proposed these waters may be late Pleistocene in age and were recharged when the island was submerged below sea level and prior to rebound at the end of the last glaciation.  相似文献   

16.
The salinization of rivers, as indicated by salinity increases in the downstream direction, is characteristic of arid and semiarid regions throughout the world. Historically, salinity increases have been attributed to various mechanisms, including (1) evaporation and concentration during reservoir storage, irrigation, and subsequent reuse; (2) displacement of shallow saline ground water during irrigation; (3) erosion and dissolution of natural deposits; and/or (4) inflow of deep saline and/or geothermal ground water (ground water with elevated water temperature). In this study, investigation of salinity issues focused on identification of relative salinity contributions from anthropogenic and natural sources in the Lower Rio Grande in the New Mexico-Texas border region. Based on the conceptual model of the system, the various sources of water and, therefore, salinity to the Lower Rio Grande were identified, and a sampling plan was designed to characterize these sources. Analysis results for boron (delta(11)B), sulfur (delta(34)S), oxygen (delta(18)O), hydrogen (delta(2)H), and strontium ((87)Sr/(86)Sr) isotopes, as well as basic chemical data, confirmed the hypothesis that the dominant salinity contributions are from deep ground water inflow to the Rio Grande. The stable isotopic ratios identified the deep ground water inflow as distinctive, with characteristic isotopic signatures. These analyses indicate that it is not possible to reproduce the observed salinization by evapotranspiration and agricultural processes alone. This investigation further confirms that proper application of multiple isotopic and geochemical tracers can be used to identify and constrain multiple sources of solutes in complex river systems.  相似文献   

17.
Mass balance calculations and hydrodynamics of groundwater flow suggest that the solutes in brines of the coastal sabkha aquifer from the Emirate of Abu Dhabi are derived largely from ascending geologic brines into the sabkha from the underlying formations. Solute interpretation for the ascending brine model (ABM) was based on two independent but secondary lines of evidence (solute ratios and solute fluxes). In the current study, direct primary evidence for this ABM was provided through analyses of δ81Br, δ37Cl, and 87Sr/86Sr. Different solute histories of geologic brine and sea water provide an “isotopic fingerprint” that can uniquely distinguish between the two possible sources. Samples from the coastal sabkha aquifer of Abu Dhabi were determined to have a mean δ81Br of 1.17‰ that is statistically equal, at the 95% confidence level, to the mean of 1.11‰ observed in the underlying geologic brine and statistically different than sea water. Similarly, the δ37Cl in sabkha brine has a mean of 0.25‰ and is statistically equal to a mean of 0.21‰ in the underlying geologic brines at the 95% confidence level and statistically different from sea water. Also, dissolved strontium isotope data are consistent with the ABM and even with the complex set of processes in the sabkha, the variance in strontium isotope results is similar to the geologic brine. These observations provide primary direct evidence consistent that the major source of these solutes (and presumably others in the aquifer) is from discharging geologic brines, not from adjacent sea water.  相似文献   

18.
Access to fresh water is one of the major issues of northern and sub-Saharan Africa. The majority of the fresh water used for drinking and irrigation is obtained from large ground water basins where there is minor contemporary recharge and the aquifers cross national borders. These aquifers include the Nubian Aquifer System shared by Chad, Egypt, Libya, and Sudan; the Iullemeden Aquifer System, extending over Niger, Nigeria, Mali, Benin, and Algeria; and the Northwest Sahara Aquifer System shared by Algeria, Libya, and Tunisia. These resources are subject to increased exploitation and may be severely stressed if not managed properly as witnessed already by declining water levels. In order to make appropriate decisions for the sustainable management of these shared water resources, planners and managers in different countries need an improved knowledge base of hydrological information. Three technical cooperation projects related to aquifer systems will be implemented by the International Atomic Energy Agency, in collaboration with the United Nations Educational, Scientific and Cultural Organization and United Nations Development Programme/Global Environmental Facility. These projects focus on isotope hydrology studies to better quantify ground water recharge and dynamics. The multiple isotope approach combining commonly used isotopes 18O and 2H together with more recently developed techniques (chlorofluorocarbons, 36Cl, noble gases) will be applied to improve the conceptual model to study stratification and ground water flows. Moreover, the isotopes will be an important indicator of changes in the aquifer due to water abstraction, and therefore they will assist in the effort to establish a sustainable ground water management.  相似文献   

19.
Mass-spectrometry with inductively coupled plasma was used to determine the element composition of 19 amphipod species, most of which are widespread in the stony littoral of Lake Baikal. Amphipod composition was found to be dominated by Ca > P ≥ S > K ≥ Na > Cl > Mg > Sr ≥ Br ≥ Si. The concentrations of all elements determined in amphipods is greater than the respective concentrations in water. The amphipods were found to concentrate P > Br > Cu > Zn > Cd to the greatest extent relative to the element composition of water and Br > P ≥ I > Ca > S > Cl ≥ As > Sr relative to that of the stone substrate. The concentrations of Cr, Mn, Fe, Co, Cu, Zn, As, Mo, Cd, Pb, and Hg in 2003–2006 in the amphipods of the stony littoral of Baikal was not greater than their concentrations in the amphipods from conventionally non-polluted or weakly polluted aquatic ecosystems. The obtained results can be used as background values in environmental monitoring.  相似文献   

20.
Study of interactions between surface-water and pore-water in lakes is complicated due to spatio-temporal heterogeneities in flow condition across the sediment–water interface. In this study, seasonal hypersaline Maharlu Lake was investigated by collecting surface-water and pore-water samples from four nests of multilevel piezometers installed at different distances from the inflow of rivers to the lake. The hydraulic heads in the piezometers as well as vertical profiles of Mg+2, Na/Cl, and Br/Cl were used to investigate both hydraulic and geochemical interactions between surface-water and pore-water in the lake. Depletion of lake surface water and pore water with respect to B, Br, Li+, K+, Mg2+ and the absence of Mg-K chlorides and sulphates in the lake bed sediments is probably due to leakage of highly evaporated residual brine from the lake. Hydraulic gradients in the multilevel piezometric nests indicate that a general downward flow from surface-water to pore-water occurs across sediment–water interface. Vertical profiles of Br/Cl, Mg2+, and Na/Cl showed that the maximum flow rate was more than 1 m/yr close to the mouth of the inflowing rivers. The downward vertical flow was limited in the area far from the inflowing rivers due to the presence of an impermeable confining halite layer which interrupts the hydraulic connection between shallow pore water (less than 50 cm deep) and deeper zones. The hydraulic and geochemical interactions between surface-water and pore-water across sediment–water interface in the Maharlu Lake are of interest to find out the fate of pollutants and their distribution in the lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号