首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Sahara–Umm Adawi pluton is a Late Neoproterozoic postcollisional A-type granitoid pluton in Sinai segment of the Arabian–Nubian Shield that was emplaced within voluminous calc-alkaline I-type granite host rocks during the waning stages of the Pan-African orogeny and termination of a tectonomagmatic compressive cycle. The western part of the pluton is downthrown by clysmic faults and buried beneath the Suez rift valley sedimentary fill, while the exposed part is dissected by later Tertiary basaltic dykes and crosscut along with its host rocks by a series of NNE-trending faults. This A-type granite pluton is made up wholly of hypersolvus alkali feldspar granite and is composed of perthite, quartz, alkali amphibole, plagioclase, Fe-rich red biotite, accessory zircon, apatite, and allanite. The pluton rocks are highly evolved ferroan, alkaline, and peralkaline to mildly peraluminous A-type granites, displaying the typical geochemical characteristics of A-type granites with high SiO2, Na2O + K2O, FeO*/MgO, Ga/Al, Zr, Nb, Ga, Y, Ce, and rare earth elements (REE) and low CaO, MgO, Ba, and Sr. Their trace and REE characteristics along with the use of various discrimination schemes revealed their correspondence to magmas derived from crustal sources that has gone through a continent–continent collision (postorogenic or postcollisional), with minor contribution from mantle source similar to ocean island basalt. The assumption of crustal source derivation and postcollisional setting is substantiated by highly evolved nature of this pluton and the absence of any syenitic or more primitive coeval mafic rocks in association with it. The slight mantle signature in the source material of these A-type granites is owed to the juvenile Pan-African Arabian–Nubian Shield (ANS) crust (I-type calc-alkaline) which was acted as a source by partial melting of its rocks and which itself of presumably large mantle source. The extremely high Rb/Sr ratios combined with the obvious Sr, Ba, P, Ti, and Eu depletions clearly indicate that these A-type granites were highly evolved and require advanced fractional crystallization in upper crustal conditions. Crystallization temperature values inferred average around 929°C which is in consistency with the presumably high temperatures of A-type magmas, whereas the estimated depth of emplacement ranges between 20 and 30 km (upper-middle crustal levels within the 40 km relatively thick ANS crust). The geochronologically preceding Pan-African calc-alkaline I-type continental arc granitoids (the Egyptian old and younger granites) associated with these rocks are thought to be the crustal source of f this A-type granite pluton and others in the Arabian–Nubian Shield by partial melting caused by crustal thickening due to continental collision at termination of the compressive orogeny in the Arabian–Nubian Shield.  相似文献   

2.
浙江洪公铝质A型花岗岩类的岩石地球化学及其构造环境   总被引:8,自引:0,他引:8  
初步研究表明,以往被认为是典型的I型花岗岩质岩石的浙江洪公岩体应为铝质A型花岗岩质岩石。该岩体以高钾为特征,K2O 达5%以上,K2O/ Na2O>1.2,准铝-过铝质(A/NKC=0.80 ~1.14);FeO*/MgO比值大(平均14.20),高于M型、S型和I型花岗岩;富含稀土元素(ΣREE=313.09×10-6~523.73×10-6),具有较高的Ga/Al(′104)值(2.92~4.29)和(Zr+Nb+Ce+Y)元素组合值(551.5′10-6~987.4′10-6),而亏损Ba、Sr、P、Ti等;Nd同位素模式年龄为1.3—1.6Ga,反映洪公岩体主要起源于地壳物质的部分熔融。区域背景、构造被动定位特点和地球化学综合分析表明,洪公岩体形成于拉张的构造环境。  相似文献   

3.
Zircon and xenotime, from two mineralogically and chemically contrasting granite suites occurring in the Kru?né Hory/Erzgebirge Mts., display extended compositional variability with respect to abundances of Zr, Hf, REE, Y, P, Th, Ca, Al, Fe and As. According to their geochemical signatures, P-rich (S-type) and P-poor (A-type) granites could be distinguished here. Both granite suites display high Ga/Al ratios (>2.6) and according to FeOtot./(FeOtot. + MgO) ratio can be classified as ferrous granites. Consequently, the both ratios cannot be used for discrimination S- and A-type granites. Both minerals are characterized by a variety of complex zircon-xenotime textures. They are usually strong hydrated and enriched in F. Zircon from P-rich granites displays a significant enrichment in P (up 0.24 apfu P), whereas zircon from P-poor granites has lower P and higher Y (up to 0.15 apfu Y). The xenotime-type substitution is the most important mechanism of isomorphic substitution in zircon in both granite suites. Zircon from both granite suites is typically enriched in Hf, especially unaltered zircon from P-rich granites (up to 8.2 wt. % HfO2). However in altered zircons the Hf/Zr ratio is higher in the P-poor granites. The Hf-rich zircon from unaltered P-rich granite crystallised from low temperature granite melt, whereas altered zircons crystallised during post-magmatic hydrothermal alteration (greisenization). Xenotime from P-poor granites displays a considerable enrichment in HREE (up to 40 mol. % HREEPO4) compared to xenotime from P-rich granites (up to 20 mol. % HREEPO4). Xenotime compositions from P-rich granites are influenced by brabantite-type substitution, whereas for xenotime from P-poor granites the huttonite-type substitution is dominant. Unusual enrichments in HREE is significant for xenotime from P-poor granites, especially in Yb (up to 0.17 apfu Yb) and Dy (up to 0.11 apfu).  相似文献   

4.
A-type granites: geochemical characteristics,discrimination and petrogenesis   总被引:318,自引:3,他引:318  
New analyses of 131 samples of A-type (alkaline or anorogenic) granites substantiate previously recognized chemical features, namely high SiO2, Na2O+K2O, Fe/Mg, Ga/Al, Zr, Nb, Ga, Y and Ce, and low CaO and Sr. Good discrimination can be obtained between A-type granites and most orogenic granites (M-, I and S-types) on plots employing Ga/Al, various major element ratios and Y, Ce, Nb and Zr. These discrimination diagrams are thought to be relatively insensitive to moderate degrees of alteration. A-type granites generally do not exhibit evidence of being strongly differentiated, and within individual suites can show a transition from strongly alkaline varieties toward subalkaline compositions. Highly fractionated, felsic I- and S-type granites can have Ga/Al ratios and some major and trace element values which overlap those of typical A-type granites.A-type granites probably result mainly from partial melting of F and/or Cl enriched dry, granulitic residue remaining in the lower crust after extraction of an orogenic granite. Such melts are only moderately and locally modified by metasomatism or crystal fractionation. A-type melts occurred world-wide throughout geological time in a variety of tectonic settings and do not necessarily indicate an anorogenic or rifting environment.Geological Survey of Canada contribution no. 18886  相似文献   

5.
Granite suites are groups of plutons possessing characteristicfeatures that are a result of their derivation from source materialof a specific composition. Variation within suites has beenascribed to a variety of processes. Magma mixing or minglingis a popular hypothesis, generally proposed in terms of blendingbetween a crustal melt and mafic material from the mantle thatcaused that melting. When the compositions of pairs of suitesfrom the Bega Batholith of southeastern Australia are compared,any differences seen at either end of the range in compositionare also seen at the other limit, so that both the most maficand most felsic rocks show similar relative abundances of particularelements. Similar relationships are seen for other granitesin the region. These observations are not consistent with large-scalemagma mixing or mingling and, although those processes may operateon a small scale, they cannot have been responsible for themajor compositional variations. Likewise, assimilation of countryrocks had no significant role in producing variation in thegranites of southeastern Australia. The production of variationby differential separation of melt from residual solid sourcematerial, or restite, must be favoured for many of the granitesuites of this region. KEY WORDS: assimilation; enclaves; granite suites; magma mixing; restite  相似文献   

6.
The Wolf River Batholith is an anorogenic rapakivi massif in central and northeastern Wisconsin with an age of 1.5 Ga. The Batholith has alkaline affinities and consists of biotite granite and biotite-hornblende adamellite with minor occurrences of quartz syenite and older monzonite and anorthosite. The batholith is part of a major Late Precambrian (1.4–1.5 Ga) magmatic event of continental proportions, represented by separate intrusions extending from Labrador to southern California (Silver et al., 1977).The major and trace element composition (Li, Rb, Sr, Ba, and REE) of 40 samples from the anorthosite, monzonite, and rapakivi granite and adamellite plutons precludes a comagmatic (although not cogenetic) model between all three rock units. However, the monzonite may be related to the anorthosite alone by fractional crystallization of plagioclase, orthopyroxene, clinopyroxene, and apatite. Alternatively, the monzonite may be a separate parent melt or a hybrid associated with the granite and adamellite plutons. The high REE content of the monzonite precludes it from being related to the rapakivi granite and adamellite plutons as a source material, a residuum, or a cumulate.A major portion of the Batholith is an undifferentiated intrusive sequence ranging from older rapakivi granite to younger adamellite. The compositions of these plutons suggest a crustal fusion origin at intermediate to lower levels of the crust (25–36 km). The trace element data are consistent with partial fusion of tonalitic to granodioritic source material.During crystallization and emplacement into the upper crust (less than 4 km), 55–70% fractionation of two feldspars, biotite and hornblende from one of the granite plutons produced a small volume of differentiated granitic melt high in Si, Fe/Mg, Rb, Li, and REE (except Eu), and low in Ca, Mg, Al, Ca/Na, Sr, Ba, and K/Rb and with a large negative Eu anomaly. Presumed associated cumulate material ranges from silica-poor quartz monzonite and quartz syenite.The chemical and mineralogical similarity between the Wolf River Batholith and younger magmatic analogs associated in continental break-up (Nigerian younger granites, White Mountain magma series, and the peralkaline volcanics of the Red Sea Region) are suggestive but not conclusive of an extensional tectonic setting. A preliminary tectonic model suggests that the 1.4–1.5 Ga event is in response to thermal doming in an extensional regime leading to continental separation in the western Cordillera (pre-Belt) and extensive crustal fusion with no rifting or separation across the North American Craton.  相似文献   

7.
《International Geology Review》2012,54(11):1284-1295
Late Cretaceous–early Tertiary granites in the Gyeongsang Basin have distinctly different bulk-rock compositions. Calc-alkaline I-type metaluminous granites display petrographic features implying magma mixing, whereas A-type granites are hypersolvus and peralkaline. I-type plutons mainly consist of enclave-rich granodiorites and enclave-poor porphyritic granites typified by abundant plagioclase phenocrysts; these granitoids contain various mafic clots and magmatic/microgranular enclaves (MMEs). A-type bodies are perthitic alkali-feldspar granites characterized by interstitial annite + riebeckite-arfvedsonite. New SHRIMP-RG zircon U–Pb age dating of an I-type enclave-poor porphyritic granite and an A-type alkali-feldspar granite yielded ages of 65.7 ± 0.7 and 53.9 ± 0.3 million years, respectively. Based on prior geochronologic data and these contrasting ages of granitic magma genesis, SE Korea may have evolved tectonically from latest Cretaceous compression to late Palaeocene extension (i.e. orogenic collapse). The later part of the 66–54 Ma magmatic gap apparently includes the time of tectonic inversion in the SE Korean Peninsula, a far-field effect of the collision of the Indian subcontinent with Eurasia. This process is also reflected in the 69–52 Ma NNE-trending Eurasian apparent polar wandering path.  相似文献   

8.
The Archean granites exposed in the Mesorchean Rio Maria granite-greenstone terrane (RMGGT), southeastern Amazonian craton can be divided into three groups on the basis of petrographic and geochemical data. (1) Potassic leucogranites (Xinguara and Mata Surrão granites), composed dominantly of biotite monzogranites that have high SiO2, K2O, and Rb contents and show fractionated REE patterns with moderate to pronounced negative Eu anomalies. These granites share many features with the low-Ca granite group of the Yilgarn craton and CA2-type of Archean calc-alkaline granites. These granites result from the partial melting of rocks similar to the older TTG of the RMGGT. (2) Leucogranodiorite-granite group (Guarantã suite, Grotão granodiorite, and similar rocks), which is composed of Ba- and Sr-rich rocks which display fractionated REE patterns without significant Eu anomalies and show geochemical affinity with the high-Ca granite group or Transitional TTG of the Yilgarn craton and the CA1-type of Archean calc-alkaline granites. These rocks appear to have been originated from mixing between a Ba- and Sr-enriched granite magma and trondhjemitic liquids or alternatively product of interaction between fluids enriched in K, Sr, and Ba, derived from a metasomatized mantle with older TTG rocks. (3) Amphibole-biotite monzogranites (Rancho de Deus granite) associated with sanukitoid suites. These granites were probably generated by fractional crystallization and differentiation of sanukitoid magmas enriched in Ba and Sr.The emplacement of the granites of the RMGGT occurred during the Mesoarchean (2.87–2.86 Ga). They are approximately coeval with the sanukitoid suites (∼2.87 Ga) and post-dated the main timing of TTG suites formation (2.98–2.92 Ga). The crust of Rio Maria was probably still quite warm at the time when the granite magmas were produced. In these conditions, the underplating in the lower crust of large volumes of sanukitoid magmas may have also contributed with heat inducing the partial melting of crustal protoliths and opening the possibility of complex interactions between different kinds of magmas.  相似文献   

9.
Three Paleoproterozoic A-type rapakivi granite suites (Jamon, Serra dos Carajás, and Velho Guilherme) are found in the Carajás metallogenic province, eastern Amazonian craton. Liquidus temperatures in the 900–870 °C range characterize the Jamon suite, those for Serra dos Carajás and Velho Guilherme are somewhat lower. Pressures of emplacement decrease from Jamon (3.2±0.7 kbar) through Serra dos Carajás (2.0±1.0 kbar) to Velho Guilherme (1.0±0.5 kbar). Oxidizing conditions (NNO+0.5) characterized the crystallization of the Jamon magma, the Velho Guilherme magmas were reducing (marginally below FMQ), and the Serra dos Carajás magmas were intermediate between the two in this respect. The three granite suites have Archean TDM model ages and strongly negative Nd values (−12 to −8 at 1880 Ma), and they were derived from Archean crust. The Jamon granite suite may have been derived from a quartz dioritic source, and the Velho Guilherme granites from K-feldspar-bearing granitoid rocks with some sedimentary input. The Serra dos Carajás granites either had a somewhat more mafic source than Velho Guilherme or were derived by a larger degree of melting. Underplating of mafic magma was probably the heat source for the melting. The petrological and geochemical characteristics of the Carajás granite suites imply considerable compositional variation in the Archean of the eastern Amazonian craton. The oxidized Jamon suite granites are similar to the Mesoproterozoic magnetite-series granites of Laurentia, and they were derived from Archean igneous sources that were more oxidized than the sources of the Fennoscandian rapakivi granites. The Serra dos Carajás and Velho Guilherme granites approach the classic reduced rapakivi series of Fennoscandia and Laurentia. No counterparts of the Mesoproterozoic two-mica granites of Laurentia have been found, however. Following the model of Hoffman [Hoffman, P., 1989. Speculations on Laurentia's first gigayear (2.0 to 1.0 Ga). Geology 17, 135–138], the origin of the 1.88 Ga Carajás granites is related to a mantle superswell beneath the Trans-Amazonian supercontinent. This caused breakup of the continent and was associated with magmatic underplating and resultant crustal melting and generation of A-type granite magmas. The Paleoproterozoic continent that included the Archean and Trans-Amazonian domains of the Amazonian craton was assembled at 2.0 Ga; its disruption was initiated at 1.88 Ga, at least 200 Ma earlier than in Laurentia and Fennoscandia. The Carajás granites were related to the breakup of the supercontinent, not to subduction processes.  相似文献   

10.
l. IntroductionGranite distributes widely in western KunlunMts. Many researches have been conducted byscientists (Wang Yuzhen et.al., l987; Zhang Yuquanet.al., l989, Fang Xilian et.al., I990, Jiang Chunfaet.al., 1992; Pan Yusheng, l992, Xu Ronghua et.al.,l 994; Jing Daogui et.al., l996, Zhang Yuquan et.al.,l998). But all of the researches have been donealong Sino-Pakistan road and Xinjiang-Tibet roadt"ith fOcus on isotopic dating of the intrusion andconducted a few on origin and tect…  相似文献   

11.
Field study of granitic rocks in the Gebel Abu Brush-Dahis (ABD) area, Southeastern Desert, Egypt, shows that they comprise two granitic groups, namely A- and I-type suites. The A type is distinguished mineralogically by abundant orthoclase and sodic plagioclase, ferrohornblende, monazite, and allanite. In contrast, the I type has more hornblende and biotite, which are more magnesian in composition, and less feldspar. The parental magmas of both suites have many similar geochemical characteristics, although the A type has slightly higher alkalis, Zr, Hf, Zn, and LREE, and lower CaO, MgO, Sr, Ni, and Fe+2. The geochemical properties characteristic of leucocratic A-type granites-such as high Ga/Al ratios, Nb, Y, HREE, and F contents-are only manifest in the more felsic members of the A-type suite. These features were produced by 70% fractional crystallization of feldspar, hornblende, quartz, and biotite. Geotectonically, the study revealed that the A-and I-type granites are typical of an arc setting, but the more felsic members of the A-type suite plot in a within-plate regime. Geochemically, the granites are subalkaline and peraluminous to metaluminous. The granodiorites/adamellites (I-type suite) have fractionated LREE and slightly fractionated or nearly flat HREE, with small or no Eu anomalies. The alkali-feldspar granites (A-type suite) have flat REE with large Eu anomalies, except for one sample, which shows increasing LREE and decreasing HREE with large Eu anomalies; the quartz-monzonites have fractionated LREE and nearly flat HREE with no Eu anomaly. The flat HREE and/or HREE enrichment is attributed to involvement of garnet and/or zircon in melt generation at the source.

The uranium and thorium contents in the granitic rocks are present in the accessory minerals—particulary in monazite, titanite, zircon, allanite, fluorite, apatite, and opaques. Anomalous high radioactivity in the bostonite (alkaline) dike as well as uranium mineralization are largely confined to contacts and fracture zones. Uranophane is the characteristic uranium mineral in the oxidation zone. An XRD study of the high anomalies in pegmatite and bostonite reveals that the uranium mineralizations produced uranophane (Usilicate), thorianite, soddyite, zippeite, and becquerelite.  相似文献   

12.
西昆仑山A型花岗岩带的发现及其地球动力学意义   总被引:18,自引:0,他引:18  
姜耀辉  杨万志 《地质论评》2000,46(3):235-244
西昆仑山发育一条醒目的A型花岗岩带,空间上与库地幔台展布范围相一致;它形成于印支晚期,与海西晚期Ⅰ型花岗岩共生;岩石相对富碱、LREE、Y、Nb、Zr,贫A1、Mg、Ca、Ba、Sr及过渡元素,又以SiO2含量范围宽(66%~77%)为其显著特色,与澳大利亚东部ChaelundiA型花岗岩极为相似。研究表明,花岗岩属A1型,形成于造山晚期相当稳定的拉张环境,是在岩石圈拆沉过程中侵位的。  相似文献   

13.
Petrology,geochemistry and genesis of Kuiqi granite batholith   总被引:1,自引:0,他引:1  
The Kuiqi granite batholith outcrops in the vicinity of Fuzhou City, Fujian Province and constitutes one of the typical alkali granitic complexes in the “Belt of Miarolitic Granites” extending along the southeast coast of China. The complex is believed to have been emplaced at higher levels of the crust in a tensional fault environment. Petrographically it is composed mainly of aegirine-arfvedsonite granites with early biotite granites scattered. Miarolitic structure and granophyric texture are commonly observed. The Rb-Sr isochron age of the complex is 107.65 m.y. Both petrological and petrochemical studies show that the Kuiqi granite is of A-type. Data on chemical composition, REE pattern and transition elements reveal that there is a close genetic connection between granites and associated volcanic rocks. Thus, syntexistype (I-type) granite, A-type granite and volcanic rocks form a cogenetic “trinity”, in which the A-type granite is usually the latest member of the volcanic-intrusive series.  相似文献   

14.
Inclusions in Three S-Type Granites from Southeastern Australia   总被引:11,自引:0,他引:11  
The Jillamatong Granodiorite is one of the most mafic S-typegranites in the Kosciusko regidn and is typical of widely distributed,cordierite-bearing S-type granites in the Lachlan Fold Beltof southeastern Australia. The Koetong and Granya Adamellitesbelong to the Koetong Suite of the Corryong Batholith and arerare examples in the Lachlan Fold Belt of granites that containprimary muscovite. Although subtle differences can be found,inclusions within the Jillamatong Granodiorite and the KoetongSuite are broadly similar despite the fact that the JillamatongGranodiorite belongs to a different and distinct suite (theBullenbalong Suite). Mica-rich schistose and micTogranular inclusionsdominate but other types occur, including foliated quartzofeldspathicvarieties, calcsilicates, quartzites, and pure quartz types.The total abundance of all inclusion types in each granite studiedis less than 5.1% although abundance varies from one graniteto another. All inclusions are believed to have been derived from metasedimentaryor modified metasedimentary lithologies and all inclusions,except some quartzites, were entrained at depth where the hostgranite magmas were generated by partial melting of heterogeneoussedimentary sources. The inclusions are restite but most arenot complementary to the melt component of the magma now representedby the host granite. They represent fragments from differentrefractory lithologies of a complex metasedimentary source andbecause their compositions and mineral assemblages were unsuitablefor the generation of large quantities of granite melt, theydid not melt or were melted only to small and variable extents(less than the rheological critical melt percentage of Arzi,1978). Such lithologies remained physically coherent and retainedtheir separation from the host granite magma during ascent.Lithologies that did melt extensively were physically disaggregatedand are not represented among the inclusions. Since the inclusions do not represent complementary restitecontrolling compositional variation among the host granites,their compositions cannot be used to precisely estimate thebulk compositions of the source rocks. However, the different,source-rock derived, inclusion types collectively provide informationregarding the lithologies present in the source and hence thegeneral character of the source terranes. The dominance of schistoseand microgranular inclusions in the Jillamatong Granodioriteand the Koetong Suite indicates that pelitic and quartzofeldspathiccompositions are the two dominant components in the source terranes. Inclusions of the same type from the two suites are broadlysimilar but different in detail. Inclusions reflect the mineralogicaland geochemical characteristics of their host granites and thereare textural differences between microgranular inclusions ofthe two suites examined. The differences reflect subtle butsignificant contrasts in source materials, the conditions prevailingduring partial melting and the history of emplacement and crystallizationof the host magmas.  相似文献   

15.
对南岭地区侏罗纪4个典型"铝质"A型花岗岩岩基——柯树北、寨背、西山和南昆山的成因分析表明:柯树北、寨背岩基中的低分异花岗岩SiO2≈70%,A/CNK<1.1,CaO≥1%,高Zr、Ba含量,是下地壳部分熔融产物;而SiO2含量较高者由低分异花岗岩岩浆通过分离结晶演化而来。西山花岗质火山-侵入杂岩也是下地壳部分熔融产物。南昆山花岗岩为高硅花岗岩,贫Zr、低Ba、Sr和Eu/Eu*值,但具有高的Nb、Ga、REE含量和Ga/Al比值,在Whalen等(1987)图解中地球化学参数落在A型花岗岩区域内。碱性玄武岩浆分离结晶的成岩模式无法解释南昆山岩基较大的体积、均一的成分和低的Nb/Ta比值。详细的成岩分析表明,南昆山花岗岩可能是先期侵入的(幔源)碱性正长岩在富水和相对低温低压条件下发生部分熔融的产物。由这些"铝质"A型花岗岩的熔融温压条件估算得出热流值达到80~95mWm-2的南岭地区侏罗纪古地温线。由古地温线推算出的岩石圈厚度45~75km。南岭侏罗纪高热流背景及其对应的花岗质岩浆活动可能与后碰撞造山阶段岩石圈地幔拆沉或被"热侵蚀"有关,但并不一定意味着岩石圈伸展的大地构造环境。  相似文献   

16.
天宫山花岗岩体成因的研究对闽西南地区岩浆演化及动力学过程有重要意义.天宫山岩体岩性主要为正长花岗岩.前人于天宫山岩体中利用K-Ar法测得年龄值为146~149 Ma,天宫山正长花岗岩中测得锆石LA-ICP-MS U-Pb年龄为233±2.0 Ma、230±2.8 Ma,为晚三叠世,属印支期.该岩体富硅,富碱,σ=1.21~2.55,A/CNK=0.97~1.73,属钙碱性系列,准铝质到过铝质范畴.岩石ΣREE较高,LREE相对富集,贫Al2O3和Sr,富Y和Yb,发育有明显的显微文象结构,具有较强的铕负异常,中等铈负异常到弱正异常;亏损大离子亲石元素,富集高场强元素.Ga/Al值高,具有A型花岗岩特征.w(P2O5)平均值为0.02%,低于高分异S型花岗岩;w(Na2O)平均值为2.93%,高于高分异S型花岗岩;全铁含量w(TFeO)平均值为1.15%,高于高分异I型花岗岩.锆石饱和温度平均值为729.8℃.εHf(t)全部为负值(-5.29~-10.69),表明其物质起源可能主要为古元古代下地壳物质.参与成岩作用的岩浆来源于地壳物质的部分熔融,为同碰撞环境下形成的壳源型铝质A型花岗岩.在印支期碰撞-挤压为主的造山运动背景下,岩体在高温环境中经历了古元古代下地壳物质的初步熔融,经印支期运动伸展,部分地幔物质参与了经底侵作用.   相似文献   

17.
Despite extensive geochemical study and their importance to granite studies, the geochronology of Silurian to early-Devonian granitic rocks of southeastern Australia is poorly understood. In order to provide an improved temporal framework, new ion microprobe U–Pb zircon ages are presented from these rocks, and previous work is critically reviewed. Geochronological control is best in the Berridale Batholith, where S- and I-type granites have a close spatial relationship. In this region, there is a small volume of I-type granite that crystallised at 436 Ma, followed closely by a large volume of S-type granite at 432 Ma. I-type granite is abundant in a second peak at ca 417 Ma, although the Jindabyne pluton from the Kosciuszko Batholith is slightly older, at 424 Ma. A broader survey of S-type granite throughout the eastern Lachlan Orogen shows that the 432 Ma event is ubiquitous. There is no temporal overlap between S- and I-type granites in the Kosciuszko and Berridale Batholiths, which suggests that factors other than variations in degree of crustal contamination (which may include variation in tectonic setting, heat-flow, mass transfer across the crust–mantle boundary and/or availability in source materials) contribute to the diversity in granite types. The S-type granitic rocks occupy an aerial extent of greater than 28 000 km2, and geochronological constraints suggest that the crystallisation of these granites took place over a relatively small interval, probably less than 10 m.y. This implies a magmatic flux of over 64 km3/Ma per km strike length, comparable to other high-flux granitic belts. Previous work has linked the Benambran Orogeny to the generation of the S-type granites, and so the age of these granites constrains the age of Benambran Orogenesis  相似文献   

18.
The Saldania Belt (SB), located in the southernmost part of South Africa, contains S-, I-, and A-type granites. Whole-rock Sm?CNd data for the Saldania granites indicate the presence of a juvenile as well as inherited crustal signature. The earlier S-type granites have ??Nd(t) values from ?4.2 to ?3.28 (for t?=?550?Ma). In contrast, the intermediate I-type and youngest A-type and highly fractionated I-type granites display ??Nd values ranging from ?1.44 to ?3.68 (for t?=?540?Ma) and from +3.66 to +5.1(for t?=?530?Ma), respectively. The U?CPb single zircon data of A-type granites exposed in the Western Branch of the SB yielded dates from 524?±?8 to 510?±?4?Ma, whereas an S-type granite, situated in the Southern Branch of the SB and represented by the syn- to late-tectonic Rooiklip Granite, yielded an age of 527?±?8?Ma. The volcano-sedimentary rocks intruded by these granites display Nd model ages from Ga to 1.67?Ga and ??Nd(t) values from ?6.58 to +3.34 (for t?=?560?Ma) with isotope signature similar to those of the granites. The S- and I-type granitic magmatism is mostly a product of melting of an earlier crust (Mesoproterozoic to Paleoproterozoic) with different degree of juvenile contribution. The obtained isotope data and field relationship support the hypothesis that the lithological units of the SB were affected by the late Neoproterozoic to Early Cambrian tectonism, related to compressive deformational processes at the southern margin of the Kalahari Plate and probably correlated with the Sierra La Ventana Belt basement.  相似文献   

19.
松潘造山带马尔康强过铝质花岗岩的成因及其构造意义   总被引:2,自引:0,他引:2  
松潘造山带广泛出露印支期后碰撞型花岗岩类, 其中包括埃达克质花岗岩类、A型花岗岩和I型花岗岩, 但目前人们对该区印支期强过铝质花岗岩尚未有深入的研究.松潘造山带马尔康花岗岩属于强过铝质花岗岩(A/CNK=1.10~1.20), 其岩石类型主要为中粒二云母花岗岩和中细粒二云母花岗岩.利用LA-ICP-MS锆石U-Pb定年方法, 获得中粒二云母花岗岩的岩浆结晶年龄为208±2Ma, 中细粒二云母花岗岩的岩浆结晶年龄为200±2Ma.马尔康强过铝质花岗岩K2O/Na2O=1.13~1.75, 富Rb、Th和U, 贫Sr、Ba、Co和Ni等元素; 稀土元素组成上显示存在强到中等的负Eu异常(Eu/Eu*=0.15~0.65);全岩初始87Sr/86Sr比值(ISr) 为0.70712~0.71137, εNd (t) =-10.36~-8.43, 锆石εHf (t) =-11.8~-1.1.地球化学和Sr-Nd-Hf同位素组成一致表明, 它们的岩浆来自于地壳物质的部分熔融, 其中中粒二云母花岗岩的源岩类型主要为地壳中的泥质岩类, 而中细粒二云母花岗岩的源岩主要为地壳中的杂砂岩类.结合松潘带的地质背景、区域构造-岩浆事件及其岩浆岩的组合分析, 印支期岩石圈拆沉作用可以用来解释马尔康强过铝质花岗岩的形成机制.在松潘带, 印支期岩石圈拆沉作用导致软流圈物质上涌, 这不仅促使了加厚下地壳物质发生部分熔融, 如松潘带印支期埃达克质和I型花岗岩浆的形成, 而且还诱发了中地壳物质的部分熔融, 如马尔康强过铝质花岗岩的形成.这表明松潘带印支期岩石圈拆沉作用已使地壳不同层次发生部分熔融作用.   相似文献   

20.
Geological mapping, petrography, geochemistry, and isotope studies enable the division of the Pelotas Batholith into six granitic suites: Pinheiro Machado (PMS), Erval (ES), Viamão (VS), Encruzilhada do Sul (ESS), Cordilheira (CS), and Dom Feliciano (DFS). The rocks of the PMS show a large compositional range (granite through granodiorite to tonalite), and the suite is considered pre- to syncollisional. Other suites show restricted compositional variations (granite to granodiorite) and are late to postcollisional. In general, the suites are metaluminous to slightly peraluminous (PMS, ES, and VS) or peraluminous (CS) or have alkaline tendencies (ESS and DFS). The magmatic evolution corresponds to high-K calc-alkaline to alkaline magmatism. The suites are enriched in K, Rb, and REE compared with rocks of typical calc-alkaline series. Initial 87Sr/86Sr ratios vary from 0.705 to 0.716, except in the CS, where they attain values of 0.732–0.740. Sm–Nd TDM model ages vary between 0.98 and 2.0 Ga, with initial εNd values ranging from −0.3 to −10. U–Pb zircon dates of samples from PMS, VS, and ESS suggest an age between 0.63 and 0.59 Ga for magmatism. Rb–Sr dates of samples of alkaline granites from DFS present ages between 0.57 and 0.55 Ga. The main tectonic controls of the magmatism of the Pelotas Batholith are high-dip sinistral shear zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号