首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A detailed analysis of the VLF/ELF wave data obtained during a whistler campaign under All India Coordinated Program of Ionosphere Thermosphere Studies (AICPITS) at our low latitude Indian ground station Jammu (geomag. lat. = 22° 26′ N, L = 1.17) has yielded two types of unusual and unique whistler-triggered VLF/ELF emissions. These include (1) whistler-triggered hook emissions and (2) whistler-triggered long enduring discrete chorus riser emissions in VLF/ELF frequency range during night time. Such types of whistler-triggered emissions have not been reported earlier from any of the ground observations at low latitudes. In the present study, the observed characteristics of these emissions are described and interpreted. Dispersion analysis of these emissions show that the whistlers as well as emissions have propagated along a higher geomagnetic field line path with L-values lying ∼L = 4, suggesting that these triggered emissions are to be regarded as mid-latitude emissions. These waves could have propagated along the geomagnetic field lines either in a ducted mode or in a pro-longitudinal (PL) mode. The measured intensity of the triggered emissions is almost equal to that of the source waves and does not vary throughout the period of observation on that day. It is speculated that these emissions may have been generated through a process of resonant interaction of the whistler waves with energetic electrons. Parameters related to this interaction are computed for different values of L and wave amplitude. The proposed mechanism explains some aspects of the dynamic spectra.  相似文献   

2.
The Matched Filtering and Parameter Estimation (MFPE) technique developed for the analysis of mid/high latitude whistlers has been extended to analyze whistlers recorded at low latitude ground station Varanasi, India (geomagnetic latitude 14° 55′ N, longitude 153° 59′ E, L=1.07). Some of the whistlers recorded at Varanasi are found to have propagated along higher L-values (L>2). It has been argued that these whistlers after exiting the ionosphere have propagated towards the equator in the Earth-ionosphere waveguide. Trace splitting is observed below the nose frequency and above 2.0 kHz, a result in agreement with mid/high latitude whistlers. The trace splitting structure revealed by MFPE demonstrates the complexities of whistler wave propagation and is quite helpful in deriving information about high resolution features of the duct structure. The banded features observed in the dynamic spectrum are clearly seen in the output of the matched filter. The observed banded features may arise due to interference between the wavelets propagating in the duct/waveguide.  相似文献   

3.
The results of an analysis of ground-based observations of very low frequency (VLF) emissions in Scandinavia (L ∼ 5) in April 2011 are discussed. A detailed study is conducted of an non-typical event (April 3, 2011) of simultaneous generation of VLF chorus at frequencies below 3 kHz and quasi-periodic VLF emissions (QP) in the band of 4–6 kHz, which were not discrete emissions but consisted of separate short (about 20 s) bursts of hiss. It is shown that these emissions were mainly characterized by right-hand polarization, which indicates the location of the exit point of waves from the ionosphere near the point of ground observations. Based on an analysis of the spectral characteristics of emissions, it is concluded that the generation regions of chorus and QP emissions were located at different L shells. The appearance of QP emissions coincided with the excitation of resonance geomagnetic pulsations of the Pc4 range in the magnetosphere with a period that was close to the quasi-period of repetition of spectral forms in QP emissions. However, based on the available data, it is not possible to conclude that these geomagnetic pulsations caused the quasi-periodic generation of bursts of VLF hiss. The time shift between the peaks of QP and geomagnetic pulsations was inconsistent and varied from one burst of hiss to another. It is suggested that the discussed QP emissions were a result of the development of self-oscillations in the Earth’s radiation belts.  相似文献   

4.
Whistler-mode signals from a single VLF transmitter that have propagated in the same duct, have been observed simultaneously at Faraday, Antarctica (65°S, 64°W) and Dunedin, New Zealand (46°S, 171°E). The signals received have group-delay times that differ in the order of 10 ms, which can be explained by the differences in southern-hemisphere sub-ionospheric propagation time from duct exit region to receiver for the two sites. This difference has been used to determine the location of the duct exit region, with confirmation provided by arrival-bearing information from both sites. The whistler-mode signals typically occur one or two days after geomagnetic activity, with Kp\geq5. The sub-ionospheric-propagation model, LWPC, is used to estimate the whistler-mode power radiated from the duct exit region. These results are then combined with estimated loss values for ionospheric and ducted transmission to investigate the role of wave-particle amplification or absorption. On at least half of the events studied, plasmaspheric amplification of the signals appears to be needed to explain the observed whistler-mode signal strengths.  相似文献   

5.
Analysis of Pc3 observational data along the 210° magnetic meridian showed a complicated frequency-latitude structure at middle latitudes. The observed period-latitude distributions vary between events with a “noisy source”: the D component has a colored-noise spectrum, while the spectrum of H component exhibits regular peaks that vary with latitude, and events with a “band-limited source”: the spectral power density of the D component is enhanced at certain frequencies throughout the network. For most ULF events a local gap of the H component amplitude has been exhibited at both conjugate stations at L ≃ 2.1. A quantitative interpretation has been given assuming that band-limited MHD emission from an extra-magnetospheric source is distorted by local field line resonances. Resonant frequencies had been singled out with the use of the asymmetry between spectra of H and D components. Additionally, a local resonant frequency at L ≃ 1.6 was determined by the quasi-gradient method using the data from nearly conjugate stations. The experimentally determined local resonance frequencies agree satisfactorily with those obtained from a numerical model of the Alfven resonator with the equatorial plasma density taken by extrapolation of Carpenter-Anderson model. We demonstrate how simple methods of hydromagnetic spectroscopy enable us to monitor simultaneously both the magnitude of the IMF and the magnetospheric plasma density from ULF data.  相似文献   

6.
Results of simultaneous TV observations of pulsating auroral patches and ELF-VLF-emissions in the morning sector carried out in Sodankylä (Finland) on February 15, 1991 are presented. Auroral pulsating activity was typical having pulsating patches with characteristic periods of about 7 s. Narrow-band hiss emissions and chorus elements at intervals of 0.3–0.4 s formed the main ELF-VLF activity in the frequency range 1.0–2.5 kHz at the same time. The analysis of auroral images with time resolution of 0.04 s allowed perfectly separate analysis of spatial and temporal variations in the auroral luminosity. Mutual correspondence between the behaviour of the luminous auroral patches and the appearance of ELF noise type hiss emissions and VLF chorus trains was found in two intervals chosen for analysis. While the hiss emissions were associated with the appearance of luminosity inside a limited area close to the zenith, the structured VLF emissions were accompanied by rapid motion of luminosity inside the area. The spatial dimension of the pulsating area was about 45–50 km and luminosity propagated inside it with velocity of about 10–12 kms. We discuss a new approach to explain the 5–15 s auroral pulsation based on the theory of flowing cyclotron maser and relaxation characteristics of ionosphere.  相似文献   

7.
The MEMO (MEsure Multicomposante des Ondes) experiment is a part of theINTERBALL 2 wave consortium. It is connected to a total of six electric and nine magnetic independent sensors. It provides waveforms associated with the measurement of two to five components in three frequency bands: ELF (5–1000 Hz), VLF (1–20 kHz), LF (20–250 kHz). Preliminary analyses of low and high resolution data are presented. The emphasis is put on the estimation of the propagation characteristics of the observed waves. VLF hiss emissions are shown to be mainly whistler mode emissions, but other modes are present. An accurate estimation of the local plasma frequency is proposed when the low L = 0 cutoff frequency is identified. AKR emissions observed just above source regions are studied. R-X and L-O modes are found: the first at the lowest frequencies and the second at the highest. Both propagate with wave normal directions weakly oblique or quasi-parallel to the Earths magnetic field direction. Propagation characteristics are also determined for a (non-drifting) fine structure of AKR. There is no fundamental difference with structurless events. Night-side and dayside bursts of ELF electromagnetic emissions are presented. It is not clear whether the two emissions belong to the lion roar emissions or not.  相似文献   

8.
The present article displays the results of theoretical investigation of the planetary ultra-low-frequency (ULF) electromagnetic wave structure, generation and propagation dynamics in the dissipative ionosphere. These waves are stipulated by a spatial inhomogeneous geomagnetic field. The waves propagate in different ionospheric layers along the parallels to the east as well as to the west and their frequencies vary in the range of (10–10−6) s−1 with a wavelength of order 103 km. The fast disturbances are associated with oscillations of the ionospheric electrons frozen in the geomagnetic field. The large-scale waves are weakly damped. They generate the geomagnetic field adding up to several tens of nanotesla (nT) near the Earth's surface. It is prescribed that the planetary ULF electromagnetic waves preceding their nonlinear interaction with the local shear winds can self-localize in the form of nonlinear long-living solitary vortices, moving along the latitude circles westward as well as eastward with a velocity different from the phase velocity of the corresponding linear waves. The vortex structures transfer the trapped particles of medium, as well as energy and heat. That is why such nonlinear vortex structures can be the structural elements of the ionospheric strong macro-turbulences.  相似文献   

9.
Simultaneous whistler records of one station and geomagnetic pulsation (Pc3) records at three stations were compared. In a previous study correlation was found between occurrence and L value of propagation/excitation for the two phenomena. The recently investigated simultaneous records have shown that the correlation is better on longer time scales (days) than on shorter ones (minutes), but the L values of the propagation of whistlers/excitation of pulsations are correlated, i.e. if whistlers propagate in higher latitude ducts, pulsations have periods longer than in the case when whistlers propagate in lower latitude ducts.  相似文献   

10.
Taipei, the capital of Taiwan, suffered from destructive earthquakes four times during the 20th century (M L = 7.3 on April 15, 1909; M L = 6.8 on November 15, 1986; the Chi–Chi M L = 7.3 earthquake on September 21, 1999; and M L = 6.8 on March 31, 2002). Analysis of recorded data shows a strong dependence of spectral amplification in the Taipei Basin on earthquake depth and azimuth. At low frequencies (f < 3 Hz) significant larger amplifications are observed for shallow earthquakes as compared to intermediate depth events. The former ones also display strong azimuthal dependence. As structures with large response periods such as bridges and tall buildings are sensitive to these low frequencies the understanding of the associated wave effects within the basin and their role for site effect amplification is critical. The tool we employ is 3D finite-difference modeling of wave propagation of incident wave fronts. The available detailed model of the basin allows studying the wave effects. Modeling clearly reveals that basin edge effects as observed in data are related to surface wave generation at the basin edges with a high degree of azimuthal dependency. The reproduced site amplification effects are in qualitative agreement with the observations from strong motion data.  相似文献   

11.
A chorus generation mechanism is discussed, which is based on interrelation of ELF/VLF noise-like and discrete emissions under the cyclotron wave-particle interactions. A natural ELF/VLF noise radiation is excited by the cyclotron instability mechanism in ducts with enhanced cold plasma density or at the plasmapause. This process is accompanied by a step-like deformation of the energetic electron distribution function in the velocity space, which is situated at the boundary between resonant and nonresonant particles. The step leads to the strong phase correlation of interacting particles and waves and to a new backward wave oscillator (BWO) regime of wave generation, when an absolute cyclotron instability arises at the central cross section of the geomagnetic trap, in the form of a succession of discrete signals with growing frequency inside each element. The dynamical spectrum of a separate element is formed similar to triggered ELF/VLF emission, when the strong wavelet starts from the equatorial plane. The comparison is given of the model developed using some satellite and ground-based data. In particular, the appearance of separate groups of chorus signals with a duration 2–10 s can be connected with the preliminary stage of the step formation. BWO regime gives a succession period smaller than the bounce period of energetic electrons between the magnetic mirrors and can explain the observed intervals between chorus elements.  相似文献   

12.
An intensification of auroral luminosity referred to as an auroral break-up often accompanies the onset of geomagnetic pulsation (Pi 2) at the dip-equator. One such auroral break-up occurred at 2239 UT on 16 June, 1986, being accompanied by weak substorm activity (AE≈50 nT) which was recorded in all-sky image of Syowa Station, Antarctica (66.2°S, 71.8°E in geomagnetic coordinates). The associated Pi 2 magnetic pulsation was detected by a fluxgate magnetometer in the afternoon sector at the dip-equator (Huancayo, Peru; 1.44°N, 355.9° in geomagnetic coordinates; 12.1°S, 75.2°W in geographic coordinates; L = 1.00). In spite of the large separation of the two stations in longitude and latitude, the auroral break-up and subsequent luminosity modulation were seen to be correlated with the wave form of the ground Pi 2 pulsation. This occurred in such a way that the luminosity maximum was seen to occur at the phase of maximum amplitudes of Pi 2 wave form. We argue that the observed correlation could be interpreted as indicating a Pi 2-modulation of a field-aligned acceleration of the low energy electrons that may occur near the equator of the midnight magnetosphere.  相似文献   

13.
The relative contributions of quasi-periodic oscillations from 2 to 35 days to the variability of foF2 at middle northern latitudes between 42°N and 60°N are investigated. The foF2 hourly data for the whole solar cycle 21 (1976–1986) for four European ionospheric stations Rome (41.9°N, 12.5°E), Poitiers (46.5°N, 0.3°E), Kaliningrad (54.7°N, 20.6°E) and Uppsala (59.8°N, 17.6°E) are used for analysis. The relative contributions of different periodic bands due to planetary wave activity and solar flux variations are evaluated by integrated percent contributions of spectral energy for these bands. The observations suggest that a clearly expressed seasonal variation of percent contributions exists with maximum at summer solstice and minimum at winter solstice for all periodic bands. The contributions for summer increase when the latitude increases. The contributions are modulated by the solar cycle and simultaneously influenced by the long-term geomagnetic activity variations. The greater percentage of spectral energy between 2 to 35 days is contributed by the periodic bands related to the middle atmosphere planetary wave activity.  相似文献   

14.
Measurements with a HF Doppler sounder at Kodaikanal (10.2°N, 77.5°E, geomagnetic latitude 0.8°N) showed conspicuous quasi-periodic fluctuations (period 25/35 min) in F region vertical plasma drift, Vz in the interval 0047/0210 IST on the night of 23/24 December, 1991 (Ap = 14, Kp < 4). The fluctuations in F region vertical drift are found to be coherent with variations in Bz (north-south) component of interplanetary magnetic field (IMF), in geomagnetic H/X components at high-mid latitude locations both in the sunlit and dark hemispheres and near the dayside dip equator, suggestive of DP2 origin. But the polarity of the electric field fluctuations at the midnight dip equator (eastward) is the same as the dayside equator inferred from magnetic variations, contrary to what is expected of equatorial DP2. The origin of the coherent occurrence of equatorial electric field fluctuations in the DP2 range of the same sign in the day and night hemispheres is unclear and merits further investigations.  相似文献   

15.
Using over 20 years of ground-based magnetometer data from the CANOPUS/CARISMA magnetometer array, we present a statistical characterisation of Pc5 ultra-low frequency (ULF) power in the 2–10 mHz band as a function of magnetic local time (MLT), L-shell, and solar wind speed. We examine the power across L-shells between 4.2 and 7.9, using data from the PINA, ISLL, GILL and FCHU stations, and demonstrate that there is a significant MLT dependence in both the H- and D-component median 2–10 mHz power during both fast (>500 km/s) and slow (<500 km/s) solar wind speeds. The H-component power consistently dominates over D-component power at all MLTs and during both fast and slow solar wind. At the higher-L stations (L>5.4), there are strong MLT power peaks in the morning and midnight local time sectors; the morning sector dominating midnight during fast solar wind events. At lower L-shells, there is no evidence of the midnight peak and the 2–10 mHz power is more symmetric with respect to MLT except during the fastest solar wind speeds. There is little evidence in the ground-based power of a localised MLT peak in ULF power at dusk, except at the lowest L-shell station, predominantly in the H-component. The median 2–10 mHz power increases with an approximate power law dependence on solar wind speed, at all local times across the L-shell domain studied in both components. The H-component power peaks at the latitude of the GILL station, with significantly lower power at both higher and lower L-shells. Conversely, the D-component power increases monotonically. We believe that this is evidence for 2–10 mHz power accumulating at auroral latitudes in field line resonances. Finally, we discuss how such ULF wave power characterisation might be used to derive empirical radiation belt radial diffusion coefficients based on, and driven by, the solar wind speed dependence of ULF wave power.  相似文献   

16.
The typical quiet day variations of the equatorial electrojet (EEJ) current intensity with time of the day, season, sunspot number, and geomagnetic latitude are presented in terms of the corresponding variations of H which is the deviation of the horizontal component (H) of the geomagnetic field from its steady nighttime level. The observed height structure of the current density in the EEJ as measured in rocket flights is presented, along with the theoretically computed structure. Theoretical model results on the polarization electric fields and east-west currents as generated by the local interactions of height-varying winds in the EEJ show large height gradients and reversals for both currents and electric fields; experimental evidence for the reality of such height structures is also shown. The characteristics of the counter-electrojet events are presented and the possible causative mechanisms are discussed critically.Some typical experimental results are presented on the electric field changes in the EEJ which result from its sensitive response to electrodynamic disturbances in the magnetosphere and the auroral-polar latitude ionosphere during geomagnetic substorms and storms; and their implications are discussed. Possibilities for utilizing the EEJ as a very useful medium for important scientific studies on the larger space domain of ionosphere-magnetosphere system, on plasma waves, and on the earth's conductivity are emphasized.  相似文献   

17.
The foF2 data obtained at Alma-Ata and Observatorio Del Ebro during the winter/spring of 2003–2004 are analyzed to compare and investigate the upper ionosphere variability at the two selected sites. The geomagnetic activity and the middle stratosphere dynamics, involving planetary wave (PW) activity, are analyzed for understanding the physical conditions and processes that can explain the observed ionospheric variability. By applying the same method of wavelet analysis to the data sets and doing a direct comparison of the results, two types of foF2 disturbances were found. The first type is 2–7-day oscillations, which appeared during periods of increased geomagnetic activity. The second type is oscillations arising from PW activity in the lower atmosphere. These consist of (1) 6–11-day oscillations arising from PW activity in lower atmospheric regions developed during the final stratosphere warming and indicating the timing of the transition from the winter to the summer circulation and (2) 9–13-day and 8–10-day oscillations mostly during the quiet level of geomagnetic activity, indicating a likely close relation with those in the geopotential height at the 1 hPa level for westward-propagating waves at 40°N, which strengthened during stratosphere warming events in January 2004. The time delay of the oscillations in the ΔfoF2 with respect to those in the geopotential height is about 10 days and it seems that the assumed ionosphere response can occur under weakened eastward zonal wind or relatively weak westward zonal wind (V<30 m s−1).  相似文献   

18.
Summary The post-storm effect (PSE) of the December 16–18, 1971 geomagnetic storm is studied with the use of the ionospheric radio wave absorption measurements and f min data from a network of the GDR, USSR and Czechoslovak observatories. Only a high latitude effect of the storm was found. We found more significant absorption effects associated with later weaker enhancements of geomagnetic activity. The part played by the interplanetary magnetic field is demonstrated. A magnetospheric explanation of the observed variability of PSE based on the time-development of filling up the slot region is suggested.  相似文献   

19.
We discuss the results of an analysis of digital high-sensitivity ground-based observations of very low frequency (VLF) emissions, carried out in Northern Finland (L = 5.3) in May–June 2012. During this period of time, we found that three high-speed solar wind streams approached the Earth’s magnetosphere and at the front of these fluxes long-lasting intense daytime bursts of VLF emissions were generated in two frequency bands: above and below ~2.5 kHz. At frequencies above ~2.5–3.0 kHz, there were VLF hiss waves, the temporal structure of which consisted of a quasi-periodic sequence of separate stronger spots of noise signals. The low-frequency band was represented by chorus waves, superimposed on intense hiss emissions at frequencies below ~1.5 kHz. The high-frequency (f > 2.5 kHz) waves were elliptic and, predominately, left-hand polarized and the low-frequency waves were right-hand polarized. It was supposed that high-frequency VLF hiss waves were generated at L < 5 and VLF chorus waves were generated at L > 5. We discuss a possible scenario of the generation and propagation of the VLF emissions observed.  相似文献   

20.
The passage of a higher pressure solar wind region at the Earths orbit marked the onset of low latitude (L = 1.6) fluctuations in the frequency range (0.8–5.5 mHz) for both the horizontal geomagnetic field components. Spectral peaks mostly occur at the same frequencies as the spectral enhancements which appeared in the long term analysis of experimental measurements from the same station and were tentatively interpreted in terms of ground signatures of global magnetospheric modes. A comparison with simultaneous observations discussed by previous investigations allows us to conclude that the same set of frequencies is enhanced in a wide portion of the Earths magneto-sphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号