首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An emission mechanism of pulsars based on the a.c. Josephson effect, proposed by Kovalev, is critically examined. It is concluded that such a mechanism is very improbable, for reasons associated with the physics of the neutron star and of the Josephson effect.  相似文献   

2.
Recycled pulsars     
Original letter published in Astrofizika, Vol. 32, No. 1, pp. 193–194, January–February, 1990.  相似文献   

3.
In 1982 we discovered a pulsar with the phenomenal rotation rate of 642 Hz, 20 times faster than the spin rate of the Crab pulsar. The absence of supernova debris in the vicinity of the pulsar at any wavelength indicates an age of the neutron star greater than 105 yr. The miniscule spindown rate of 1.1 × 10-19 confirms the old age and indicates a surface magnetic field of 109 G. A second millisecond pulsar was discovered by Boriakoff, Buccheri & Fauci (1983) in a 120-day orbit. These fast pulsars may have been spun-up by mass transfer in a close binary evolutionary stage. Arrival-time observations of the 642-Hz pulsar display remarkably low residuals over the first 14 months. The stability implied by these observations, 3 × 10-14, suggests that millisecond pulsars will provide the most accurate basis for terrestrial dynamical time. If so, the pulsar data will lead to improvements in the planetary ephemeris and to new searches for light-year scale gravitational waves. Many new searches for fast pulsars are under way since previous sky surveys excluded pulsars with spins above 60 Hz.  相似文献   

4.
Various observations of γ-ray pulsars are summarized briefly and related to outer-magnetosphere accelerator models.  相似文献   

5.
6.
We analyze the statistical distribution of weakly radiating pulsars, i.e., radio pulsars that have passed to the stage of an orthogonal rotator during the evolution of the inclination angle X. We discuss in detail the factors that lead to a significant reduction in the energy losses for this class of objects. We have determined the number of weakly radiating radio pulsars and their distribution in spin period P. The predictions of a theory based on the model of current losses are shown to be consistent with observational data.  相似文献   

7.
We derive the post-Newtonian multipole ‘wobble” radiation formula taking into account self-gravity, internal stress and internal motion by means of the general multipole-moment formula of Epstein and Wagoner. Applying our formula to the Crab and Vela pulsars, we find the power to be 1.8 times that of the quadrupole radiation. The excess comes mainly from the self-gravity of the source. Thus, it is important to include the self-gravity and to use the antipole-moment formula when considering gravitational radiation from astrophysical sources.  相似文献   

8.
9.
Pulsars play a crucial astrophy sical role as highly energetic compact radio, X-ray and gammaray sources. Our previous works show that radio pulsars identified as pulsing gamma-ray sources by the Large Area Telescope(LAT) on board the Fermi Gamma-Ray Space Telescope have high values of magnetic field near the light cylinder, two-three orders of magnitude stronger compared with the magnetic fields of radio pulsars: log B_(lc)(G) are 3.60-3.95 and 1.75 correspondingly. Moreover,their losses of rotational energy are also three orders higher than the corresponding values for the main group of radio pulsars on average: log E(erg s~(-1)) = 35.37-35.53 and 32.64. The correlation between gammaray luminosities and radio luminosities is found. It allows us to select those objects from all sets of known radio pulsars that can be detected as gamma-ray pulsars with high probability. We provide a list of such radio pulsars and propose to search for gamma emission from these objects. On the other hand,the known catalog of gamma-ray pulsars contains some sources which are not currently identified as radio pulsars. Some of them have large values of gamma-ray luminosities and according to the obtained correlation, we can expect marked radio emission from these objects. We give the list of such pulsars and expected flux densities to search for radiation at frequencies 1400 and 111 MHz.  相似文献   

10.
11.
12.
13.
Assuming that the orientation of a pulsar’s velocity vector is parallel to its spin axis, we have calculated the space velocities of 61 pulsars from their tangential velocities. The mean space velocity of the sample is equal to 267 km s-1. The radial velocities and kinematical ages of 20 pulsars are obtained. The decay time of the magnetic field of pulsars is τD = 2 Myr, smaller than previously found  相似文献   

14.
The results of flux pulsar radioemission measurements at meter wavelengths, made at Pushchino Radio Astronomical Observatory of the Lebedev Physical Institute, are presented. Flux densities at 102, 85, 61 and 39 MHz have been measured for 85, 29, 37 and 23 pulsars correspondingly. Some of them were performed at all frequencies simultaneously. On the basis of these data and high frequencies data obtained by other authors, spectra of 52 pulsars were plotted. In practically all investigated pulsars we have detected a turn-over frequency at which the flux density of pulsar radioemission attained its maximum. Its mean value isv m =130±80 MHz. Averaged on many pulsars, the spectral index is negative in the 39–61 MHz frequency range and passes through zero at frequencies of about 100 MHz, becoming positive in the 100–400 MHz frequency range. It was noticed that the spectral index in the 100–400 MHz interval depends upon such pulsar periods as α100−=0.7logp+0.9. Using the spectra, more precise radio luminosities of pulsars have been computed.  相似文献   

15.
We have attempted to devise a scheme by which it may be possible to identify pulsars which are likely to be γ-ray pulsars. We apply this test to a representative population of pulsars and identify the likely candidates for γ emission. We also discuss some individual cases including the Crab and Vela pulsars.  相似文献   

16.
Pulsars show intensity variations over timescales ranging from a few microseconds to a few years. Short-term intensity variations,i.e. those having timescales of a few minutes to a few hours had been difficult to study as their timescales are similar to those due to interstellar scintillations. We present here a method to separate the autocorrelation function of the short-term broadband intensity variations from that of the interstellar scintillations and thus overcome the above difficulty. The method assumes that the intrinsic variations are correlated over a bandwidth much larger than the decorrelation bandwidth for scintillations. Hence the ratio of the power in the variations due to the two causes depends on the bandwidth used. By applying the method to the intensity variations of 24 pulsars, we show that the presence of short-term intrinsic variations is very common in the radiation of pulsars. Quasi-periodicities were detected in the intensity variations of many pulsars, but their origin is not clear.  相似文献   

17.
We have detected significant rotation measure (RM) variations for nine bright pulsars, as a function of pulse longitude. An additional sample of 10 pulsars showed a rather constant RM with phase, yet a small degree of RM fluctuation is visible in at least three of those cases. In all cases, we have found that the rotation of the polarization position angle across our 1.4 GHz observing band is consistent with the  λ2  law of interstellar Faraday rotation. We provide for the first time convincing evidence that RM variations across the pulse are largely due to interstellar scattering, although we cannot exclude that magnetospheric Faraday rotation may still have a minor contribution; alternative explanations of this phenomenon, like erroneous de-dispersion and the presence of non-orthogonal polarization modes, are excluded. If the observed, phase-resolved RM variations are common amongst pulsars, then many of the previously measured pulsar RMs may be in error by as much as a few tens of rad m−2.  相似文献   

18.
Millisecond pulsars represent an evolutionarily distinct group among rotation-powered pulsars. Outside the radio band, the soft X-ray range (~0.1–10 keV) is most suitable for studying radiative mechanisms operating in these fascinating objects. X-ray observations revealed diverse properties of emission from millisecond pulsars. For the most of them, the bulk of radiation is of a thermal origin, emitted from small spots (polar caps) on the neutron star surface heated by relativistic particles produced in pulsar acceleration zones. On the other hand, a few other very fast rotating pulsars exhibit almost pure nonthermal emission generated, most probably, in pulsar magnetospheres. There are also examples of nonthermal emission detected from X-ray nebulae powered by millisecond pulsars, as well as from pulsar winds shocked in binary systems with millisecond pulsars as companions. These and other most important results obtained from X-ray observations of millisecond pulsars are reviewed in this paper, as well as results from the search for millisecond pulsations in X-ray flux of the radio-quite neutron star RX J1856.5-3754.  相似文献   

19.
20.
The differential rotation of plasma in the core of pulsars (Ωs ≠ Ωe) generates convective currents increasing with time which in turn generates the toroidal magnetic field. To avoid difficulties of physical interpretation inherent to the theory of general relativity we have adopted the tetrad approach to discuss the generation of the magnetic field in the core of the neutron stars. The results which we have obtained are in agreement with those obtained earlier. Published in Astrofizika, Vol. 49, No. 4, pp. 613–620 (August 2006).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号