首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
马健  魏子卿 《测绘学报》2018,47(11):1429-1436
基于Helmert第二压缩法进行边值解算时需要计算地形压缩对重力的直接影响和对(似)大地水准面的间接影响。计算近区直接、间接影响的传统积分算法仍是二重积分形式。该算法以网格中心点处的积分核作为网格积分核的平均值的计算模式在一定程度上引入了近似误差。另外,直接、间接影响的传统积分算法在中央区存在奇异性,需单独计算中央网格地形影响,因而增加了计算的复杂性。为此,本文推导了近区地形直接、间接影响的棱柱模型公式,一方面提高了地形影响的计算精度;另一方面中央区不存在奇异性,从而简化了计算过程。为避免棱柱模型存在的平面近似误差,可使用顾及地球曲率的棱柱模型算法计算地形影响。最后通过试验得出结论,在(似)大地水准面精度要求较高的应用中,应尽量使用顾及地球曲率的棱柱模型算法计算地形影响。  相似文献   

2.
地形影响的积分算法在中央区存在奇异性,为避免奇异问题可将中央区地形近似为与计算点等高的圆柱体。基于此,提出使用更接近实际网格地形的棱柱模型计算地形影响,并通过推导给出了中央区直接、间接影响的棱柱模型算法公式。当地形网格较小时,棱柱模型与圆柱模型计算的中央区直接影响的差异为正;当地形网格较大时差异为负,但对于中央区间接影响,棱柱模型与圆柱模型计算结果的差异总为负值。当地形高分别取1 000、2 000和3 000 m时,棱柱模型与圆柱模型计算的直接影响差异的极值分别约为±0.3、±0.5和±0.8 m Gal,而间接影响差异的极值分别约为-0.02、-0.12和-0.27 cm。对于高精度的应用需求,当区域海拔较高时建议采用本文提出的更符合实际地形的棱柱模型计算中央区直接、间接影响。  相似文献   

3.
重力测量数据存在地形数据产生的高频分量的影响,高精度地形数据正演重力梯度也能较好地反映重力局部高频特征。为获得高精度重力梯度数据,实现基准梯度数据库精确快速构建,研究了利用数字高程模型正演重力梯度的频率域快速计算方法,推导出基于余弦变换的Parker正演重力梯度理论公式。数值实验结果表明,余弦变换频率域正演方法平均绝对误差可达到0.5E左右精度要求,与傅里叶变换正演方法相比误差可减小3dB左右,与棱柱法等空间域正演方法相比,该方法计算规模小,速度优势明显。  相似文献   

4.
随着GNSS、航空重力等技术的发展,扰动重力数据的获取变得越来越便捷。然而目前利用Hotine积分与扰动重力数据确定区域大地水准面的研究比较少。本文主要研究了Hotine积分中央区改正方法和Hotine积分核函数改进方法;利用改进的Hotine积分核函数结合扰动重力数据构建了区域大地水准面。实验表明,本文提出的中央区改正方法可以解决Hotine积分中央区奇异的问题;改进核函数的方法可以有效地削弱远区截断误差的影响并且可以提高数据的利用率。  相似文献   

5.
刘繁明  钱东  郭静 《测绘学报》2011,40(1):45-51
推导基于卡尔曼滤波的海底地形反演算法,算法通过利用重力梯度仪测量重力梯度异常,提高地形反演的精度和分辨率.结合地形坡度计算理论和矩形棱柱法,建立基于卡尔曼滤波的系统方程和量测方程.对算法进行仿真,分析地形均值误差、随机误差和梯度仪测量精度对反演精度的影响,最后的区域反演仿真结果表明:反演后的地形在精度和分辨率上都有所提...  相似文献   

6.
刘繁明  张迎发  荆心  李艳 《测绘学报》2013,42(2):177-183,190
为获得高精度重力梯度数据,实现基准梯度数据库精确快速构建,研究利用数字高程模型正演重力梯度的频率域快速计算方法,推导出基于余弦变换的Parker正演重力梯度理论公式。数值试验结果表明,余弦变换频率域正演方法平均绝对误差可达到0.5 E左右精度要求,与傅里叶变换正演方法相比误差可减小3 dB左右,与棱柱法等空间域正演方法相比,该方法计算规模小,速度优势明显。  相似文献   

7.
为解决Hotine积分计算低空扰动引力径向分量时的奇异性问题,本文从Hotine积分公式入手,分析了产生奇异性的原因及其影响;并在此基础上根据分区原理推导出Hotine积分的无奇异公式,本文算法将内区视为扰动重力值相等的微小平面,直接进行数学积分以消除奇异性,最后从理论上阐述了本文算法的优势。数值试验结果表明,相较于传统方法,改进后的Hotine积分在整个积分区域内连续,地表附近扰动引力径向分量的计算结果奇异性消除,而且高度越低,精度越好。此外,经过改化,Hotine积分核函数变为边界面上扰动重力差分形式,这减弱了远区地面数据对计算结果的影响,改进后的Hotine积分对地面数据的需求量相比于传统算法降低了近20倍,而且高度越低,对积分半径的要求越低。本文算法适用于低空外部重力场计算,而且效能较高。  相似文献   

8.
对局部地形校正中的中央区奇异积分部分进行非奇变换,使用Simpson公式和Cotes公式推导出两种中央区的数值计算方法。试算结果表明,新方法可有效地提高地形校正的精度。  相似文献   

9.
利用非奇变换,将地形校正诸奇异积分转化为一组非奇异积分。理论分析和数值计算都表明,奇异积分非奇异后,可有效地提高地形校正中央区积分的精确度。  相似文献   

10.
地形改正与地形直接影响的转化关系   总被引:1,自引:0,他引:1  
传统的第三边值问题的解算方法有Molodensky算法和Stokes-Helmert算法两种。在Molodensky算法中使用的地形改正和Stokes-Helmert算法中使用的直接影响均由大地水准面外地形产生,因而必然存在关系。本文通过推导给出了直接影响是地形改正、层间改正与压缩地形影响3项之和的结论。在此基础上,给出了直接影响的质量线平面积分算法、质量棱柱平面积分算法和地形改正的球面积分算法。此外本文还推导了布格球冠层间改正算法。通过实验得出,直接影响的质量线平面积分算法和质量棱柱平面积分算法与传统球面积分算法的差异分别为3.81和1.64 m Gal;地形改正球面积分算法与传统质量线、质量棱柱平面积分的差异分别为3.92和1.69 m Gal。该结果说明,本文推导的直接影响与地形改正的关系式是正确有效且实用的。  相似文献   

11.
J. Li 《Journal of Geodesy》2005,79(1-3):64-70
Integral formulas are derived which can be used to convert the second-order radial gradient of the disturbing potential, as boundary values, into the disturbing potential, gravity anomaly and the deflection of the vertical. The derivations are based on the fundamental differential equation as the boundary condition in Stokes’s boundary-value problem and the modified Poisson integral formula in which the zero and first-degree spherical harmonics are excluded. The rigorous kernel functions, corresponding to the integral operators, are developed by the methods of integration.  相似文献   

12.
目前对含有导频通道的新信号的捕获研究,主要是设计联合捕获算法,提高功率利用率以提升接收性能,分为等长与非等长相干积分联合算法两类. 本文针对北斗B1C信号,深入分析了三种等长相干积分联合算法的加权问题,并解释了相干联合与差分联合算法的联系. 理论和仿真结果表明,相干联合算法具有更优的性能;进一步,本文结合最优相干积分时间理论给出捕获参数设计方案,对比了不同场景条件下等长与非等长相干积分联合算法的性能,给出了捕获B1C信号的优化策略.   相似文献   

13.
为了减小或者完全避免地下开采对地表建筑物的有害影响,根据深部开采地表移动的实测数据,本文给出了地表移动和变形预计参数,利用概率积分法对地表任意点的下沉值进行计算,分析了建筑物受地下开采的影响程度,以此对矿区地表建筑物保护煤柱进行设计。研究表明,基于地表移动和变形预计理论的保护煤柱设计方法,对减少深部开采保护煤柱的压煤量、保护地表建筑物、实现地下煤炭开采的可持续发展具有一定的参考价值。  相似文献   

14.
本文重点探讨了近地卫星的受力情况,从理论上分析了司托克斯积分公式的一些特性,给出了高空扰动引力的误差量级及适当的近区域积分半径;最后,利用数值积分方法,对几种情况的卫星轨道计算进行了比较分析。  相似文献   

15.
Gravity gradient modeling using gravity and DEM   总被引:2,自引:0,他引:2  
A model of the gravity gradient tensor at aircraft altitude is developed from the combination of ground gravity anomaly data and a digital elevation model. The gravity data are processed according to various operational solutions to the boundary-value problem (numerical integration of Stokes’ integral, radial-basis splines, and least-squares collocation). The terrain elevation data are used to reduce free-air anomalies to the geoid and to compute a corresponding indirect effect on the gradients at altitude. We compare the various modeled gradients to airborne gradiometric data and find differences of the order of 10–20 E (SD) for all gradient tensor elements. Our analysis of these differences leads to a conclusion that their source may be primarily measurement error in these particular gradient data. We have thus demonstrated the procedures and the utility of combining ground gravity and elevation data to validate airborne gradiometer systems.  相似文献   

16.
The determination of the gravimetric geoid is based on the magnitude of gravity observed at the surface of the Earth or at airborne altitude. To apply the Stokes’s or Hotine’s formulae at the geoid, the potential outside the geoid must be harmonic and the observed gravity must be reduced to the geoid. For this reason, the topographic (and atmospheric) masses outside the geoid must be “condensed” or “shifted” inside the geoid so that the disturbing gravity potential T fulfills Laplace’s equation everywhere outside the geoid. The gravitational effects of the topographic-compensation masses can also be used to subtract these high-frequent gravity signals from the airborne observations and to simplify the downward continuation procedures. The effects of the topographic-compensation masses can be calculated by numerical integration based on a digital terrain model or by representing the topographic masses by a spherical harmonic expansion. To reduce the computation time in the former case, the integration over the Earth can be divided into two parts: a spherical cap around the computation point, called the near zone, and the rest of the world, called the far zone. The latter one can be also represented by a global spherical harmonic expansion. This can be performed by a Molodenskii-type spectral approach. This article extends the original approach derived in Novák et al. (J Geod 75(9–10):491–504, 2001), which is restricted to determine the far-zone effects for Helmert’s second method of condensation for ground gravimetry. Here formulae for the far-zone effects of the global topography on gravity and geoidal heights for Helmert’s first method of condensation as well as for the Airy-Heiskanen model are presented and some improvements given. Furthermore, this approach is generalized for determining the far-zone effects at aeroplane altitudes. Numerical results for a part of the Canadian Rocky Mountains are presented to illustrate the size and distributions of these effects.  相似文献   

17.
针对Stokes-Pizzetti积分用于外部扰动重力场计算中从空中趋近地面时存在着不连续和积分奇异的问题,对该式进行了改进。改进式引入地面计算点处的重力异常,得到一个从地面到空中统一适用的公式,并且中和了在地面计算点处的奇异性。类似地,改进了的Stokes公式在用于大地水准面计算时积分的奇异性同样起到了改善作用。  相似文献   

18.
张钟军  孙国清 《遥感学报》2005,9(5):531-536
提出了一种估计覆盖植被的地表亮度温度模型。模型中的植被看作是不同大小和朝向的离散散射体如叶、茎、杆构成。植被层内的体散射以及植被与地表之间的多次散射采用了双矩阵法(M atrix Doub ling)计算,地表辐射采用了积分方程模型(Integral Equation M ethod)。较高频率上的模拟结果显示植被的辐射是主要的,植被对地表辐射的衰减作用较明显。模拟的亮度温度跟SGP99机载C波段以及AMSR-E的X和Ku波段实测数据相比接近一致。  相似文献   

19.
目前,基于重力数据反演海底地形方法的主要原理是利用测深数据拟合出海底地形与重力(或重力梯度)数据之间的线性关系,这会导致对不同的海底地形会有不同的线性关系。为了克服这种不确定性的制约,本文基于长方体海山产生的垂直重力梯度的表达式,通过将研究海域进行格网化,建立了垂直重力梯度(vertical gravity gradient,VGG)与海深之间的函数关系,即关于海深的观测方程组,在此基础上,通过模拟计算,验证了观测方程组的解不仅唯一可解,而且具有较好的抗误差干扰性质。由于观测方程组受到研究海域外海山的影响(分为边界效应、远区影响),因此,需要相应的数学方法来处理这些影响。本文将研究海域进行扩充得到扩展区域,然后在扩展海域上研究观测方程组,此时为了避免观测方程组出现奇异性,引入了正则化方法对扩展后的观测方程组进行求解,并从中截取研究海域上的海深。模拟试验表明,使用正则化方法后,边界效应对反演海深的均方根误差为0.48 m。最后,对南中国海真实海底地形进行了反演计算,将反演的海深与研究海域内的289个船测数据点进行对比,反演结果的均方根误差达到109 m。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号