共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
3.
以我国西南地区44个GNSS站在ITRF2008框架下约6年的高精度GNSS坐标时间序列为例,研究CME对高精度GNSS坐标时间序列的影响。用PCA方法提取序列中的CME并分析其对高精度GNSS坐标时间序列特征参数的影响。研究结果表明,CME对高精度GNSS时间序列的振幅、相位、噪声类型及测站速率均有不同程度的影响,主要体现在滤波后44个测站N、E、U方向序列标准差分别提高75%、70%、57%;滤波前后测站U方向约50%的测站速率有1~2 mm的差异。可见,在高精度时间序列建模、地壳蠕动形变分析、毫米级参考框架建立等高精度GNSS数据应用领域中CME的影响不容忽视。 相似文献
4.
5.
噪声分析对GPS时间序列分析有着重要影响,然而针对时间跨度较长的大尺度GPS网的共模误差相关研究较少。本文选取了平均基线长度大于2000 km的欧洲地区9个GPS台站2006-2014年的数据,使用主成分分析法剔除坐标时间序列的共模误差,同时利用极大似然估计的方法对滤波前后的时间序列进行了噪声分析。结果表明,欧洲地区广域GPS网的噪声模型存在多样性,各个分量具有不同的噪声特性,主要表现为白噪声+闪烁噪声、白噪声+幂率噪声,少部分台站N、E两个方向含有随机漫步噪声。经过空间滤波后,部分台站最优噪声模型发生改变,但仍以白噪声+闪烁噪声、白噪声+幂率噪声为主。滤波对N、E方向速度场影响为0.2 mm/a,U方向速度场影响为0.5 mm/a。 相似文献
6.
为快速有效地分离GPS坐标时间序列中的共模误差(common mode error,CME),采用区域堆栈滤波法、加权堆栈滤波法、相关加权叠加滤波法、距离加权滤波法、主成分分析(principalcomponentanalysis,PCA)5种滤波方法对GPS坐标时间序列进行CME处理;基于MATLAB设计了相应的GPS坐标时间序列CME分离工具。并以8个GPS基准站的坐标序列为对象,对去除CME后的GPS坐标序列进行噪声模型分析。结果表明,这5种方法能有效降低各站点坐标时间序列的不确定性,提高坐标序列精度,相比其他方法,PCA法滤波效果更好;此外,去除CME后的时间序列最佳噪声模型发生了改变,且GPS站坐标序列噪声模型呈现出多样性并存在个体差异。 相似文献
7.
针对GPS坐标时序数据中存在的共模误差(CME),研究利用堆栈滤波(SF)、网络反演滤波(NIF)和主成分分析(PCA)三种方法进行剔除,以提高GPS监测区域地表位移的精度.通过构建GPS坐标时序模型,去除明显构造运动,提取噪声残差时序,将隐含在噪声残差时序中的区域CME利用SF、NIF、PCA方法提取出来.以日本房总半岛2019—2021年GPS坐标时序为例,比较三种方法和GPS站点空间分辨率对CME提取的影响,分析CME去除前后慢滑移地表位移的变化.研究结果表明:SF、NIF、PCA方法提取CME的结果基本一致;GPS站点空间分辨率降低,提取的CME离散度增大;CME对慢滑移地表水平位移的大小和方向均会产生影响,需进行剔除. 相似文献
8.
基于全球分布均匀且时间跨度大于10a的138个IGS基准站坐标时间序列分析了大空间尺度GPS网基准站坐标时间序列之间的相关性发现部分测站之间的距离超过5 000km时仍存在较显著的相关性针对目前共模误差提取方法存在的不足引入相关系数作为权重因子改进了区域叠加滤波算法 并利用IGS基准站坐标时间序列验证了此方法 结果表明改进后的相关系数加权叠加滤波算法能够有效地提取大空间尺度GPS网坐标时间序列中的共模误差. 相似文献
9.
10.
11.
针对北京市CORS站的稳定性问题,该文利用GAMIT/GLOBK软件对北京市13个CORS站2016—2018年的观测数据进行了处理,获取了原始坐标时间序列和坐标残差时间序列,通过极大似然估计的方法对CORS基准站进行了噪声模型分析和区域速度场估计。结果表明,北京市CORS站坐标时间序列的最佳噪声模型为WN+FN+RWN组合模型;采用NEU方向的最佳噪声组合模型对北京市CORS站进行区域速度场估计,BJTZ、CHAO、DSQI、XNJC站的沉降较为严重,其他CORS站N方向速度估值在7.2~14.3 mm/a,E方向速度估值在27.5~32.5 mm/a,U方向速度估值在2.0~8.5 mm/a。 相似文献
12.
13.
针对GNSS站坐标时间序列信噪不易分离的问题,在传统EMD去噪方法的基础上,本文提出了一种联合LMD与EMD的坐标时间序列去噪方法。该方法首先采用LMD分解原始坐标时间序列,基于连续均方误差(CMSE)原则分离高频噪声与低频信号,保持低频分量不变;然后对高频分量进行EMD去噪;最后以2次分解所得低频信号之和作为去噪后时间序列。以仿真数据与8个GNSS基准站实测数据进行试验,通过多种评价指标进行精度评估。结果表明,与传统EMD方法相比,联合LMD与EMD的方法能够更加精确地去除坐标时间序列中的噪声。 相似文献
14.
选取ITRF2008框架下格陵兰岛区域12个GPS站2013年1月-2016年12月期间的日解坐标时间序列作为研究对象,并利用极大似然估计分析地表质量负载改正前后各站点的噪声特性、速度场及周期项振幅。结果表明:站点最优噪声模型主要为白噪声+幂律噪声与白噪声+闪烁噪声,地表质量负载形变修正GPS坐标时序后,明显增加U方向闪烁噪声的成分,平均降低其速度约0.36 mm/a,对水平方向影响较小;同时分别降低高程方向44.1%、14.2%的1 a项、0.5 a项振幅,相反,却增加了水平方向的周期项振幅。 相似文献
15.
针对不同地区连续运行参考站(CORS)坐标时间序列周期特性与噪声特性存在的差异性问题,本文采用功率谱分析法和极大似然法分析香港卫星参考站网(SatRef)的坐标时间序列.研究结果表明,参考站点的三个坐标分量上都存在明显的年周期项与半年周期项.各参考站坐标分量上的噪声特性存在多样化的特征,白噪声(WN)加闪烁噪声(FN)是主要噪声模型,仅考虑WN而忽视有色噪声(CN)的做法会大大低估参数估计的不确定度.根据最优噪声模型估值得出的SatRef站速度场在水平方向上有整体向东南方向运动的趋势,与华南块体的运动结果基本一致. 相似文献
16.
17.
18.
GPS站坐标时间序列中存在的周期性与非周期性误差严重影响了对测站运动特征的分析及其非线性变化的物理机制解释。因此,为削弱噪声的影响,本文首先利用区域叠加滤波法去除了南加利福尼亚地区16个测站时间序列的共模误差,以此削弱时间序列中存在的包括周年和半周年误差在内的周期性误差。为去除滤波后残留的噪声,对滤波后的信号进行静态离散小波变换,提取了周期为半周年以上的信号。结果表明,联合区域叠加滤波法与小波变换对GPS站坐标时间序列进行处理,既能够削弱周期性误差对信号的影响,又能较好地提取测站的非线性运动信号。 相似文献
19.
以30个GPS基准站坐标序列为对象,提出分别采用赤池信息量准则(AIC)与贝叶斯信息准则(BIC)噪声模型估计准则判定GPS时间序列噪声特性,对比分析GPS时间序列噪声模型特性,探讨不同噪声模型对GPS站速度及其不确定度的影响.结果表明GPS站坐标序列噪声模型主要表现为FN+WN、PL及FN+RW+WN噪声模型特性;FN+WN噪声模型对GPS站速度估计值的影响相对较小,但在U分量影响最为明显;此外,RW对站速度不确定度的影响不可忽略,正确获取模型参数估计的实际不确定度及改正噪声分量对于合理应用GPS坐标时间序列数据具有重要的意义. 相似文献