共查询到17条相似文献,搜索用时 62 毫秒
1.
针对机载激光雷达(light detection and ranging,LiDAR)数据与航空彩色影像的数据特点,提出了一种面向对象的多源数据融合分类方法。该方法根据影像光谱特性将航空影像分割为若干个同质区域,通过综合考察每个区域内LiDAR数据的滤波结果、空间离散度、高差值和航空影像光谱信息,判断各区域归属为哪一类。实验表明,该方法能够有效地分离房屋、树木和裸露地3种基本地物。 相似文献
2.
3.
提出将LiDAR数据对水体的敏感性与航空影像的高分辨率特征相结合的水体自动提取方法。利用SIFT算法对LiDAR强度图像和航空影像进行配准,在LiDAR高程图像上提取无回波信号的黑色区域,构建几何约束条件,排除由遮挡产生的无效区域;将水体初始位置映射到航空影像上,结合边缘信息进行区域生长,并对生长区域进行数学形态学运算,最终获取水体区域。实验结果表明,该方法可以获得很好的水体提取效果。 相似文献
4.
5.
6.
7.
8.
谭金石 《测绘与空间地理信息》2015,(6):81-83
机载LiDAR作为一种新兴的对地观测技术,能够快速地获取地表三维信息。如何从海量LiDAR点云数据中提取建筑物是数据处理中的一项关键工作。本文结合LiDAR数据和航空影像的数据特点,提出了一种航空影像辅助的LiDAR点云建筑物提取方法,首先,采用面向对象方法从航空影像中提取建筑物的轮廓;然后,以建筑轮廓信息为参考,从LiDAR点云中提取建筑物的点云数据;最后,通过实验证明该方法的有效性与可行性。 相似文献
9.
10.
11.
针对城市地物信息提取中地物边界难以确定、分类精度不高的问题,该文提出一套综合利用影像及激光雷达点云高程信息的面向对象分类方法。在分割中,各类地物的最佳分割尺度由监督法分割精度评价确定,最终分割结果利用粒度理论下的分割尺度综合方法进行合成,能兼顾不同地物最优分割尺度,获得准确地物边界;在分类中,采用ReliefF特征选择算法度量从影像及点云数据提取的对象特征重要度,选择最佳特征组合,并采用多分类器组合方法进行分类,以消除Hughes现象,提高分类精度。选择德国斯图加特市两块实验区进行分类实验,结果表明:该方法有利于提高大范围城市地物精细信息提取的精度和效率,具有较高的应用价值。 相似文献
12.
建筑物轮廓作为建筑物三维重建的重要元素,在建立智慧城市和数字城市中至关重要。本文针对从机载激光雷达点云中提取建筑物轮廓数据处理的点云滤波、建筑物屋顶面提取、建筑物轮廓提取,以及提取精度评定各环节存在的一些问题,提出了一种综合区域生长改进算法、三维Hough变换算法和α-shape算法的建筑物轮廓提取方法。该方法在对机载LiDAR点云数据去噪的基础上,首先利用改进的区域生长算法滤波地面点,并基于地物点到地面的归一化高程特征通过高度阈值去除高度较为低矮的地物点;再基于三维Hough变换算法从剩余建筑物和高大树木点云中提取建筑物平面;最后使用α-shape算法提取建筑物的轮廓信息。对使用RIEGLVQ-1560i机载激光雷达测量系统扫描的某城区点云数据进行计算,通过匹配度、形状相似度和位置精度等评价指标对提取的建筑物轮廓进行精度评定。结果表明,综合区域生长改进算法、三维Hough变换算法和α-shape算法的建筑物轮廓提取方法可以准确提取建筑物的轮廓信息,对于大范围的建筑物轮廓提取具有稳定性和普遍适用性。 相似文献
13.
14.
15.
点云滤波分类是LiDAR后续应用的基础工作,在点云滤波的基础上,以航空影像为辅助条件,结合点云高程信息,设计一套地物点云的分类方法.该方法首先融合航空影像与LiDAR数据,将对应RGB值赋予每个点,根据植被的光谱特征提取出部分植被点云;然后再根据文中定义的点云高程纹理,在剩余地物点云中提取出建筑物点,最后根据回波次数信息分离出剩余植被点,完成地物点云的分类.采用北京凤凰岭地区一组机载LiDAR数据进行实验.实验结果表明,该方法能够有效地将地物点云进行分类并且满足一定的精度要求,具有一定的实用价值. 相似文献
16.