首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The “fundamental plane of accreting black holes” and an empirical connection between X-ray binaries (XRBs) and active galactic nuclei (AGN) based on variability properties is presented. Following these connections we construct disc-fraction luminosity diagrams (DFLD), a generalisation of hardness-intensity diagrams used for XRBs. We show that the radio-loudness of AGN depends on the position in the DFLD similar to what is observed in XRBs. For those XRBs and AGN on the right side of the diagram (hard state XRBs, LLAGN and many radio-loud quasars) we show that the jet power and accretion rate can be estimated from the core radio emission. This accretion measure is used to explore the dependence of the bolometric luminosity on the accretion rate.  相似文献   

2.
In recent years, significant evidence for the similar nature of active galactic nuclei (AGN) and X-ray binaries (XRBs) has been gathered. We describe a unification scheme for accreting black holes following the idea that weakly accreting systems may be jet dominated. This is tested with the radio/X-ray correlation of XRBs and AGN. The established correlation is further used to diagnose ultra-luminous X-ray sources. For higher accretion rates, we explore high-power jets and the effect of Compton cooling of the jet by the accretion disk.  相似文献   

3.
Previous observations with the Rossi X-ray Timing Explorer ( RXTE ) have suggested that the power spectral density (PSD) of NGC 3783 flattens to a slope near zero at low frequencies, in a similar manner to that of Galactic black hole X-ray binary systems (GBHs) in the 'hard' state. The low radio flux emitted by this object, however, is inconsistent with a hard state interpretation. The accretion rate of NGC 3783 (∼7 per cent of the Eddington rate) is similar to that of other active galactic nuclei (AGN) with 'soft'-state PSDs and higher than that at which the GBH Cyg X-1, with which AGN are often compared, changes between 'hard' and 'soft' states (∼2 per cent of the Eddington rate). If NGC 3783 really does have a 'hard'-state PSD, it would be quite unusual and would indicate that AGN and GBHs are not quite as similar as we currently believe. Here we present an improved X-ray PSD of NGC 3783, spanning from ∼10−8 to ∼10−3 Hz, based on considerably extended (5.5 yr) RXTE observations combined with two orbits of continuous observation by XMM–Newton . We show that this PSD is, in fact, well fitted by a 'soft' state model which has only one break, at high frequencies. Although a 'hard'-state model can also fit the data, the improvement in fit by adding a second break at low frequency is not significant. Thus NGC 3783 is not unusual. These results leave Arakelian 564 as the only AGN which shows a second break at low frequencies, although in that case the very high accretion rate implies a 'very high', rather than 'hard' state PSD. The break frequency found in NGC 3783 is consistent with the expectation based on comparisons with other AGN and GBHs, given its black hole mass and accretion rate.  相似文献   

4.
5.
We present an X-ray spectroscopic study of the prototype far-infrared galaxy NGC 6240 from ASCA . The soft X-ray spectrum (below 2 keV) shows clear signatures of thermal emission well described by a multitemperature optically thin plasma, which probably originates in a powerful starburst. Strong hard X-ray emission is also detected with ASCA and its spectrum above 3 keV is extremely flat with a prominent iron K line complex, very similar to that seen in the Seyfert 2 galaxy NGC 1068 but about an order of magnitude more luminous ( L 3−10keV ≈ 1.4 × 1042 erg s−1). The hard X-ray spectrum indicates that only reflected X-rays of an active galactic nucleus (AGN) buried in a heavy obscuration ( N H > 2 × 1024 cm−2) are visible. This is evidence for an AGN in NGC 6240, emitting possibly at a quasar luminosity (∼ 1045 erg s−1), and suggests its significant contribution to the far-infrared luminosity.  相似文献   

6.
In this paper, we consider the process of alignment of a spinning black hole and a surrounding misaligned accretion disc. We use a simplified set of equations, that describe the evolution of the system in the case where the propagation of warping disturbances in the accretion disc occurs diffusively, a situation likely to be common in the thin discs in active galactic nuclei (AGN). We also allow the direction of the hole spin to move under the action of the disc torques. In such a way, the evolution of the hole–disc system is computed self-consistently. We consider a number of different situations and we explore the relevant parameter range, by varying the location of the warp radius R w and the propagation speed of the warp. We find that the dissipation associated with the twisting of the disc results in a large increase in the accretion rate through the disc, so that AGN accreting from a misaligned disc are likely to be significantly more luminous than those accreting from a flat disc. We compute explicitly the time-scales for the warping of the disc and for the alignment process and compare our results with earlier estimates based on simplified steady-state solutions. We also confirm earlier predictions that, under appropriate circumstances, accretion can proceed in a counter-aligned fashion, so that the accreted material will spin-down the hole, rather than spinning it up. Our results have implication in a number of different observational features of AGN such as the orientation and shape of jets, the shape of X-ray iron lines and the possibility of obscuration and absorption of X-ray by the outer disc as well as the general issue of the spin history of black holes during their growth.  相似文献   

7.
We use ROSAT HRI spatial data and ASCA spectral measurements for a sample of seven nearby, early-type spiral galaxies, to address the question of whether a low-luminosity active galactic nucleus (LLAGN) is present in galaxies that have a LINER 2 classification. The brightest discrete X-ray source in the ROSAT HRI observations is invariably found to be positionally coincident with the optical galactic nucleus, and in most cases its flux dominates the X-ray emission from the central region of the galaxy. All seven galaxies have X-ray spectra consistent with a two-component, soft thermal plus hard power-law, spectral form. If we exclude the two galaxies with relatively hard X-ray spectra, NGC 3628 and NGC 4594, for which there is supporting evidence for a LLAGN (or alternatively in the case of NGC 3628 a dominant ultraluminous X-ray binary), then the remaining galaxies show surprisingly similar X-ray spectral properties. Specifically the flux ratio F X(0.5–1)/ F X(2–5) , which measures the relative strengths of the thermal and non-thermal emission components, shows little scatter about a mean of 0.66, a value very similar to that measured in the classic starburst galaxy NGC 253. As there is no obvious reason why the luminosity of the hard power-law continuum emanating from a putative LLAGN should be very closely correlated with the thermal emission of the surrounding region, this suggests that that the broad-band (0.5–5 keV) X-ray emission from these LINER 2 galaxies may originate in a common set of processes probably associated with the starburst phenomenon. Conversely, it appears that in many LINER 2 galaxies and perhaps the majority, the nuclear X-ray luminosity does not derive directly from the presence of a LLAGN.  相似文献   

8.
We have surveyed 188 ROSAT Position Sensitive Proportional Counter (PSPC) fields for X-ray sources with hard spectra ( α <0.5); such sources must be major contributors to the X-ray background at faint fluxes. In this paper we present optical identifications for 62 of these sources: 28 active galactic nuclei (AGN) which show broad lines in their optical spectra (BLAGN), 13 narrow emission line galaxies (NELGs), five galaxies with no visible emission lines, eight clusters and eight Galactic stars.
The BLAGN, NELGs and galaxies have similar distributions of X-ray flux and spectra. Their ROSAT spectra are consistent with their being AGN obscured by columns of 20.5< log( N H/cm−2)<23 . The hard spectrum BLAGN have a distribution of X-ray to optical ratios which is similar to that found for AGN from soft X-ray surveys (1< α OX<2) . However, a relatively large proportion (15 per cent) of the BLAGN, NELGs and galaxies are radio loud. This could be because the radio jets in these objects produce intrinsically hard X-ray emission, or if their hardness is caused by absorption, it could be because radio-loud objects are more X-ray luminous than radio-quiet objects. The eight hard sources identified as clusters of galaxies are the brightest, and softest group of sources and hence clusters are unlikely to be an important component of the hard, faint population.
We propose that BLAGN are likely to constitute a significant fraction of the faint, hard, 0.5–2 keV population and could be important to reproducing the shape of the X-ray background, because they are the most numerous type of object in our sample (comprising almost half the identified sources), and because all our high redshift ( z >1) identified hard sources have broad lines.  相似文献   

9.
We report the detection of hard X-ray emission components in the spectra of six nearby, giant elliptical galaxies observed with the ASCA satellite. The systems studied, which exhibit strong dynamical evidence for supermassive black holes in their nuclei, are M87, NGC 1399 and NGC 4696 (the dominant galaxies of the Virgo, Fornax and Centaurus clusters, respectively) and NGC 4472, 4636 and 4649 (three further giant ellipticals in the Virgo cluster). The ASCA data for all six sources provide clear evidence for hard emission components, which can be parametrized by power-law models with photon indices in the range Γ=0.6–1.5 (mean value 1.2) and intrinsic 1–10 keV luminosities of 2×1040–2×1042 erg s−1. Our results imply the identification of a new class of accreting X-ray source, with X-ray spectra significantly harder than those of binary X-ray sources, Seyfert nuclei or low-luminosity active galactic nuclei, and bolometric luminosities relatively dominated by their X-ray emission. We discuss various possible origins for the hard X-ray emission and argue that it is most likely to be due to accretion on to the central supermassive black holes, via low radiative efficiency accretion flows coupled with strong outflows. In the case of M87, our detected power-law flux is in good agreement with a previously reported measurement from ROSAT High Resolution Imager observations, which were able to resolve the jet from the nuclear X-ray emission components. We confirm previous results showing that the use of multiphase models in the analysis of the ASCA data leads to determinations of approximately solar emission-weighted metallicities for the X-ray gas in the galaxies. We also present results on the individual element abundances in NGC 4636.  相似文献   

10.
Fluorescent iron line profiles currently provide the best diagnostic for engine geometries of active galactic nuclei (AGN). Here we construct a method for calculating the relativistic iron line profile from an arbitrarily warped accretion disc, illuminated from above and below by hard X-ray sources. This substantially generalizes previous calculations of reprocessing by accretion discs by including non-axisymmetric effects. We include a relativistic treatment of shadowing by ray-tracing photon paths along Schwarzschild geodesics. We apply this method to two classes of warped discs, and generate a selection of resulting line profiles. New profile features include a time-varying line profile if the warp precesses about the disc, profile differences between 'twisted' and 'twist-free' warps and the possibility of steeper red and softer blue fall-offs than for flat discs. We discuss some qualitative implications of the line profiles in the context of Type I and II Seyfert AGN and other sources.  相似文献   

11.
The environmental properties of a sample of 31 hard X-ray selected active galactic nuclei (AGN) are investigated, from scales of 500 kpc down to 30 kpc, and are compared to a control sample of inactive galaxies. All the AGN lie in the redshift range  0.4 < z < 0.6  . The accretion luminosity density of the Universe peaks close to this redshift range, and the AGN in the sample have X-ray luminosities close to the knee in the hard X-ray luminosity function, making them representative of the population that dominated this important phase of energy conversion.
Using both the spatial clustering amplitude and near-neighbour counts, it is found that the AGN have environments that are indistinguishable from normal, inactive galaxies over the same redshift range and with similar optical properties. Typically, the environments are of subcluster richness, in contrast to similar studies of high- z quasars, which are often found in clusters with comparable richness to the Abell   R ≥ 0  clusters.
It is suggested that minor mergers with low-mass companions are a likely candidate for the mechanism by which these modest luminosity AGN are fuelled.  相似文献   

12.
We investigate the relationship between the present-day optical luminosity function of galaxies and the X-ray luminosity function of Seyfert 1s to determine the fraction of galaxies that host Seyfert 1 nuclei and their Eddington ratios. The local type 1 active galactic nuclei (AGN) X-ray luminosity function is well reproduced if ∼1 per cent of all galaxies are type 1 Seyferts which have Eddington ratios of ∼10−3. However, in such a model the X-ray luminosity function is completely dominated by AGN in E and S0 galaxies, contrary to the observed mix of Seyfert host galaxies. To obtain a plausible mix of AGN host galaxy morphologies requires that the most massive black holes in E and S0 galaxies accrete with lower Eddington ratios, or have a lower incidence of Seyfert activity, than the central black holes of later-type galaxies.  相似文献   

13.
We study how axisymmetric magnetohydrodynamic (MHD) accretion flows depend on γ adiabatic index in the polytropic equation of state. This work is an extension of Mościbrodzka & Proga, where we investigated the γ dependence of two-dimensional Bondi-like accretion flows in the hydrodynamical (HD) limit. Our main goal is to study if simulations for various γ can give us insights into the problem of various modes of accretion observed in several types of accretion systems, such as black hole binaries (BHBs), active galactic nuclei (AGN) and gamma-ray bursts. We find that for  γ≳ 4/3  , the fast-rotating flow forms a thick torus that is supported by rotation and gas pressure. As shown before for  γ= 5/3  , such a torus produces a strong, persistent bipolar outflow that can significantly reduce the polar funnel accretion of a slowly rotating flow. For low γ, close to 1, the torus is thin and is supported by rotation. The thin torus produces an unsteady outflow which is too weak to propagate throughout the polar funnel inflow. Compared to their HD counterparts, the MHD simulations show that the magnetized torus can produce an outflow and does not exhibit regular oscillations. Generally, our simulations demonstrate how the torus thickness affects the outflow production. They also support the notion that the geometrical thickness of the torus correlates with the power of the torus outflow. Our results, applied to observations, suggest that the torus ability to radiatively cool and become thin can correspond to a suppression of a jet as observed in the BHBs during a transition from a hard/low to soft/high spectral state and a transition from a quiescent to hard/low state in AGN.  相似文献   

14.
We derive accretion rate functions (ARFs) and kinetic luminosity functions (KLFs) for jet-launching supermassive black holes. The accretion rate as well as the kinetic power of an active galaxy is estimated from the radio emission of the jet. For compact low-power jets, we use the core radio emission while the jet power of high-power radio-loud quasars is estimated using the extended low-frequency emission to avoid beaming effects. We find that at low luminosities the ARF derived from the radio emission is in agreement with the measured bolometric luminosity function (BLF) of active galactic nucleus (AGN), i.e. all low-luminosity AGN launch strong jets. We present a simple model, inspired by the analogy between X-ray binaries (XRBs) and AGN, that can reproduce both the measured ARF of jet-emitting sources as well as the BLF. The model suggests that the break in power-law slope of the BLF is due to the inefficient accretion of strongly sub-Eddington sources. As our accretion measure is based on the jet power it also allows us to calculate the KLF and therefore the total kinetic power injected by jets into the ambient medium. We compare this with the kinetic power output from supernova remnants (SNRs) and XRBs, and determine its cosmological evolution.  相似文献   

15.
We model the reflected spectrum expected from localized magnetic flares above an ionized accretion disc. We concentrate on the case of very luminous magnetic flares above a standard accretion disc extending down to the last stable orbit, and use a simple parametrization to allow for an X-ray-driven wind. Full disc spectra including relativistic smearing are calculated. When fitted with the constant-density reflection models, these spectra give both a low reflected fraction and a small linewidth as seen in the hard spectra from galactic black hole binaries and active galactic nuclei. We fit our calculated spectra to real data from the low/hard state of Nova Muscae and Cyg X-1 and show that these models give comparable χ 2 to those obtained from the constant-density reflection models, which implied a truncated disc. This explicitly demonstrates that the data are consistent either with magnetic flares above an ionized disc extending down to the last stable orbit around a black hole, or with non-ionized, truncated discs.  相似文献   

16.
We announce the discovery of an extended emission-line region associated with a high-redshift type-2 quasi-stellar object (QSO). The halo, which was discovered in our new wide-field narrow-band survey, resides at   z = 2.85  in the Spitzer First Look Survey region and is extended over ∼80 kpc. Deep very long baseline interferometry (VLBI) observations imply that approximately 50 per cent of the radio emission is extended on scales >200 pc. The inferred active galactic nuclei (AGN) luminosity is sufficient to ionize the extended halo, and the optical emission is consistent with being triggered coevally with the radio source. The Lyα halo is as luminous as those found around high-redshift radio galaxies; however, the active nucleus is several orders of magnitude less luminous at radio wavelengths than those Fanarof–Riley type II (FRIIs) more commonly associated with extended emission-line regions. AMS05 appears to be a high-redshift analogue to the radio-quiet quasar E1821+643 which is core dominated, but which also exhibits extended Fanarof–Riley type I (FRI)-like structure and contains an optically powerful AGN. We also find evidence for more quiescent kinematics in the Lyα emission line in the outer regions of the halo, reminiscent of the haloes around the more powerful FRIIs. The optical to mid-infrared spectral energy distribution is well described by a combination of an obscured QSO  ( L bol∼ 3.4 ± 0.2 × 1013 L)  and a 1.4 Gyr old simple stellar population with mass  ∼3.9 ± 0.3 × 1011 M  .  相似文献   

17.
18.
Hard X-ray selection is the most efficient way to discriminate between accretion-powered sources, such as active galactic nuclei (AGN), and sources dominated by starlight. Hard X-rays are also less affected than other bands by obscuration. We have therefore carried out the BeppoSAX High Energy Large Area Survey (HELLAS) in the largely unexplored 5–10 keV band, finding 180 sources in ∼50 deg2 of sky with flux≳5×10−14 erg cm−2 s−1. After correction for the non-uniform sky coverage this corresponds to resolving about 30 per cent of the hard cosmic X-ray background (XRB). Here we report on a first optical spectroscopic identification campaign, finding 12 AGN out of 14 X-ray error boxes studied. Seven AGN show evidence for obscuration in X-ray and optical bands, a fraction higher than in previous ROSAT or ASCA – ROSAT surveys (at 95–99 and 90 per cent confidence levels respectively), thus supporting the scenario in which a significant fraction of the XRB is created by obscured AGN.  相似文献   

19.
There is increasing evidence that supermassive black holes in active galactic nuclei (AGN) are scaled-up versions of Galactic black holes. We show that the amplitude of high-frequency X-ray variability in the hard spectral state is inversely proportional to the black hole mass over eight orders of magnitude. We have analysed all available hard-state data from RXTE of seven Galactic black holes. Their power density spectra change dramatically from observation to observation, except for the high-frequency (≳10 Hz) tail, which seems to have a universal shape, roughly represented by a power law of index −2. The amplitude of the tail,   C M   (extrapolated to 1 Hz), remains approximately constant for a given source, regardless of the luminosity, unlike the break or quasi-periodic oscillation frequencies, which are usually strongly correlated with luminosity. Comparison with a moderate-luminosity sample of AGN shows that the amplitude of the tail is a simple function of black hole mass,   C M = C / M   , where   C ≈ 1.25 M Hz−1  . This makes   C M   a robust estimator of the black hole mass which is easy to apply to low- to moderate-luminosity supermassive black holes. The high-frequency tail with its universal shape is an invariant feature of a black hole and, possibly, an imprint of the last stable orbit.  相似文献   

20.
A number of recent results from X-ray observations of active galactic nuclei involving the Fe K α line (reduction of line variability compared with the X-ray continuum variability, the X-ray 'Baldwin effect') were attributed to the presence of a hot, ionized skin of an accretion disc, suppressing emission of the line. The ionized skin appears as a result of the thermal instability of X-ray irradiated plasma. We test this hypothesis by computing the Thomson thickness of the hot skin on top of the αP tot Shakura–Sunyaev disc, by simultaneously solving the vertical structure of both the hot skin and the disc. We then compute a number of relations between observable quantities, e.g. the hard X-ray flux, amplitude of the observed reprocessed component, relativistic smearing of the K α line and rms variability of the hard X-rays. These relations can be compared with present and future observations. We point out that this mechanism is unlikely to explain the behaviour of the X-ray source in MCG–6-30-15, where there are a number of arguments against the existence of a thick hot skin, but it can work for some other Seyfert 1 galaxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号