首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the results of a Very Large Telescope observing programme carried out in service mode using fors 1 on ANTU (UT1) in long slit mode to determine the optical velocities of nearby low surface brightness galaxies. Outlying Local Group galaxies are of paramount importance in placing constraints on the dynamics and thus on both the age and the total mass of the Local Group. Optical velocities are also necessary to determine if the observations of H  i gas in and around these systems are the result of gas associated with these galaxies or a chance superposition with high-velocity H  i clouds or the Magellanic Stream. The data were of a sufficient signal-to-noise ration to enable us to obtain a reliable result in one of the galaxies we observed – Antlia – for which we have found an optical heliocentric radial velocity of 351±15 km s−1.  相似文献   

2.
3.
4.
We present a search for  CO(1 → 0)  emission in three Local Group dwarf irregular galaxies: IC 5152, the Phoenix dwarf and UGCA 438, using the ATNF Mopra radio telescope. Our scans largely cover the optical extent of the galaxies and the stripped H  i cloud west of the Phoenix dwarf. Apart from a tentative but non-significant emission peak at one position in the Phoenix dwarf, no significant emission was detected in the CO spectra of these galaxies. For a velocity width of 6 km s−1, we derive 4σ upper limits of 0.03, 0.04 and 0.06 K km s−1 for IC 5152, the Phoenix dwarf and UGCA 438, respectively. This is an improvement of over a factor of 10 compared with previous observations of IC 5152; the other two galaxies had not yet been observed at millimetre wavelengths. Assuming a Galactic CO-to-H2 conversion factor, we derive upper limits on the molecular gas mass of  6.2 × 104, 3.7 × 103  and  1.4 × 105 M  for IC 5152, the Phoenix dwarf and UGCA 438, respectively. We investigate two possible causes for the lack of CO emission in these galaxies. On the one hand, there may be a genuine lack of molecular gas in these systems, in spite of the presence of large amounts of neutral gas. However, in the case of IC 5152 which is actively forming stars, molecular gas is at least expected to be present in the star-forming regions. On the other hand, there may be a large increase in the CO-to-H2 conversion factor in very low-metallicity dwarfs  (−2 ≤[Fe/H]≤−1)  , making CO a poor tracer of the molecular gas content in dwarf galaxies.  相似文献   

5.
We have studied the velocity field of the blue compact dwarf galaxy Mrk 86 (NGC 2537) using data provided by 14 long-slit optical spectra obtained in 10 different orientations and positions. This kinematical information is complemented with narrow-band ([O  iii ]5007 Å and H α ) and broad-band ( B , V , Gunn r and K ) imaging. The analysis of the galaxy global velocity field suggests that the ionized gas could be distributed in a rotating inclined disc, with projected central angular velocity of Ω=34 km s−1 kpc−1. The comparison between the stellar, H  i and modelled dark matter density profile indicates that the total mass within its optical radius is dominated by the stellar component. Peculiarities observed in its velocity field can be explained by irregularities in the ionized gas distribution or local motions induced by star formation.
Kinematical evidences for two expanding bubbles, Mrk 86–B and Mrk 86–C, are given. They show expanding velocities of 34 and 17 km s−1, H α luminosities of 3×1038 and 1.7×1039 erg s−1, and physical radii of 374 and 120 pc, respectively. The change in the [S  ii ]/H α , [N  ii ]/H α , [O  ii ]/[O  iii ] and [O  iii ]/H β line ratios with the distance to the bubble precursor suggests a diminution in the ionization parameter and, in the case of Mrk 86–B, an enhancement of the shock-excited gas emission. The optical–near-infrared colours of the bubble precursors are characteristic of low‐metallicity star‐forming regions (∼0.2 Z) with burst strengths of about 1 per cent in mass.  相似文献   

6.
This paper argues that the Milky Way galaxy is probably the largest member of the Local Group. The evidence comes from estimates of the total mass of the Andromeda galaxy (M31) derived from the three-dimensional positions and radial velocities of its satellite galaxies, as well as the projected positions and radial velocities of its distant globular clusters and planetary nebulae. The available data set comprises 10 satellite galaxies, 17 distant globular clusters and nine halo planetary nebulae with radial velocities. We find that the halo of Andromeda has a mass of together with a scalelength of 90 kpc and a predominantly isotropic velocity distribution. For comparison, our earlier estimate for the Milky Way halo is Although the error bars are admittedly large, this suggests that the total mass of M31 is probably less than that of the Milky Way . We verify the robustness of our results to changes in the modelling assumptions and to errors caused by the small size and incompleteness of the data set.
Our surprising claim can be checked in several ways in the near future. The numbers of satellite galaxies, planetary nebulae and globular clusters with radial velocities can be increased by ground-based spectroscopy, while the proper motions of the companion galaxies and the unresolved cores of the globular clusters can be measured using the astrometric satellites Space Interferometry Mission ( SIM ) and Global Astrometric Interferometer for Astrophysics ( GAIA ). Using 100 globular clusters at projected radii 20 R 50 kpc with both radial velocities and proper motions, it will be possible to estimate the mass within 50 kpc to an accuracy of 20 per cent. Measuring the proper motions of the companion galaxies with SIM and GAIA will reduce the uncertainty in the total mass caused by the small size of the data set to 22 per cent.  相似文献   

7.
8.
The Sculptor dwarf spheroidal galaxy has a giant branch with a significant spread in colour, symptomatic of an intrinsic age–metallicity spread. We present here a detailed study of the Sculptor giant branch and horizontal branch (HB) morphology, combining new near-infrared photometry from the Cambridge Infrared Survey Instrument (CIRSI), with optical data from the European Southern Observatory Wide Field Imager. For a Sculptor-like old and generally metal-poor system, the position of red giant branch (RGB) and asymptotic giant branch (AGB) stars on the colour–magnitude diagram (CMD) is mainly metallicity dependent. The advantage of using optical–near-infrared colours is that the position of the RGB locus is much more sensitive to metallicity than with optical colours alone. In contrast the HB morphology is strongly dependent on both metallicity and age. Therefore a detailed study of both the RGB in optical–near-infrared colours and the HB can help break the age–metallicity degeneracy. Our measured photometric width of the Sculptor giant branch corresponds to a range in metallicity of 0.75 dex. We detect the RGB and AGB bumps in both the near-infrared and the optical luminosity functions, and derive from them a mean metallicity of  [M/H]=−1.3 ± 0.1  . From isochrone fitting we derive a mean metallicity of  [Fe/H]=−1.42  with a dispersion of 0.2 dex. These photometric estimators are for the first time consistent with individual metallicity measurements derived from spectroscopic observations. No spatial gradient is detected in the RGB morphology within a radius of 13 arcmin, twice the core radius. On the other hand, a significant gradient is observed in the HB morphology index, confirming the 'second parameter problem' present in this galaxy. These observations are consistent with an early extended period of star formation continuing in time for a few Gyr.  相似文献   

9.
Possible orbital histories of the Sgr dwarf galaxy are explored. A special-purpose N -body code is used to construct the first models of the Milky Way–Sgr dwarf system in which both the Milky Way and the Sgr dwarf are represented by full N -body systems and followed for a Hubble time. These models are used to calibrate a semi-analytic model of the Sgr dwarf's orbit that enables us to explore a wider parameter space than is accessible to the N -body models. We conclude that the extant data on the Sgr dwarf are compatible with a wide range of orbital histories. At one extreme the Sgr dwarf initially possesses ∼1011 M and starts from a Galactocentric distance R D(0)≳200 kpc. At the other extreme the Sgr dwarf starts with ∼109 M and R D(0)∼60 kpc, similar to its present apocentric distance. In all cases the Sgr dwarf is initially dark matter dominated and the current velocity dispersion of the Sgr dwarf's dark matter is tightly constrained to be 21±2 km s−1. This number is probably compatible with the smaller measured dispersion of the Sgr dwarf's stars because of (i) the dynamical difference between dark and luminous matter, and (ii) velocity anisotropy.  相似文献   

10.
Observations are presented of the isolated dwarf irregular galaxy And IV made with the Hubble Space Telescope Advanced Camera for Surveys and the Giant Metrewave Radio Telescope in the 21 cm HI line. We determine the galaxy distance of 7.17 ± 0.31 Mpc using the Tip of Red Giant Branch method. The galaxy has a total blue absolute magnitude of –12.81 mag, linear Holmberg diameter of 1.88 kpc, and an HI ‐disk extending to 8.4 times the optical Holmberg radius. The HI massto‐blue luminosity ratio for And IV amounts 12.9 M/L. From the GMRT data we derive the rotation curve for the HI and fit it with different mass models. We find that the data are significantly better fit with an iso‐thermal dark matter halo, than by an NFW halo. We also find that MOND rotation curve provides a very poor fit to the data. The fact that the isothermal dark matter halo provides the best fit to the data supports models in which star formation feedback results in the formation of a dark matter core in dwarf galaxies. The total mass‐to‐blue luminosity ratio of 162 M/L makes And IV among the darkest dIrr galaxies known. However, its baryonic‐to‐dark mass ratio (Mgas + M *)/MT = 0.11 is close to the average cosmic baryon fraction of 0.15. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
We investigate a wide range of possible evolutionary histories for the recently discovered Bootes dwarf spheroidal galaxy, a Milky Way satellite. By means of N -body simulations, we follow the evolution of possible progenitor galaxies of Bootes for a variety of orbits in the gravitational potential of the Milky Way. The progenitors considered cover the range from dark matter-free star clusters to massive, dark matter-dominated outcomes of cosmological simulations. For each type of progenitor and orbit, we compare the observable properties of the remnant after 10 Gyr with those of Bootes observed today. Our study suggests that the progenitor of Bootes must have been, and remains now, dark matter-dominated. In general, our models are unable to reproduce the observed high velocity dispersion in Bootes without dark matter. Our models do not support time-dependent tidal effects as a mechanism able to inflate significantly the internal velocity dispersion. As none of our initially spherical models is able to reproduce the elongation of Bootes, our results suggest that the progenitor of Bootes may have had some intrinsic flattening. Although the focus of this paper is the Bootes dwarf spheroidal, these models may be of general relevance to understanding the structure, stability and dark matter content of all dwarf spheroidal galaxies.  相似文献   

12.
We present stellar radial velocity data for the Draco dwarf spheroidal (dSph) galaxy obtained using the AF2/WYFFOS instrument combination on the William Herschel Telescope. Our data set consists of 186 member stars, 159 of which have good quality velocities, extending to a magnitude   V ≈19.5  with a mean velocity precision of ≈2 km s−1. As this survey is based on a high-precision photometric target list, it contains many more Draco members at large radii. For the first time, this allows a robust determination of the radial behaviour of the velocity dispersion in a dSph.
We find statistically strong evidence of a rising velocity dispersion consistent with a dark matter halo that has a gently rising rotation curve. There is a <2 σ signature of rotation about the long axis, inconsistent with tidal disruption as the source of the rising dispersion. By comparing our data set with earlier velocities, we find that Draco probably has a binary distribution and fraction comparable to those in the solar neighbourhood.
We apply a novel maximum likelihood algorithm and fit the velocity data to a two parameter spherical model with an adjustable dark matter content and velocity anisotropy. Draco is best fit by a weakly tangentially anisotropic distribution of stellar orbits in a dark matter halo with a very slowly rising rotation law  ( v circ∝ r 0.17)  . We are able to rule out both a mass-follows-light distribution and an extended halo with a harmonic core at the 2.5 to 3 σ significance level, depending on the details of our assumptions about Draco's stellar binary population. Our modelling lends support to the idea that the dark matter in dwarf spheroidals is distributed in the form of massive, nearly isothermal haloes.  相似文献   

13.
We present wide-field     multiband ( BVI ) CCD photometry (down to     of the very low surface brightness dwarf spheroidal galaxy Sextans. In the derived colour–magnitude diagrams we find evidence suggesting the presence of multiple stellar populations in this dwarf spheroidal. In particular, we discover (i) a blue horizontal branch tail that appears to lie on a brighter sequence with respect to the prominent red horizontal branch and the RR Lyrae stars, very similar to what was found by Majewski et al. for the Sculptor dwarf spheroidal, (ii) hints of a bimodal distribution in colour of the red giant branch stars, (iii) a double red giant branch bump. All of these features suggest that (at least) two components are present in the old stellar population of this galaxy: the main one with     and a minor component around     . The similarity to the Sculptor case may indicate that multiple star formation episodes are also common in the most nearby dwarf spheroidals that ceased their star formation activity at very early epochs.  相似文献   

14.
15.
We present 21-cm H  i line observations of the blue compact dwarf galaxy NGC 1705. Previous optical observations show a strong outflow powered by an ongoing starburst dominating the H  ii morphology and kinematics. In contrast, most of the H  i lies in a rotating disc. An extraplanar H  i spur accounts for ∼8 per cent of the total H  i mass, and is possibly associated with the H  ii outflow. The inferred mass loss rate out of the core of the galaxy is significant, ∼0.2 − 2 M yr−1, but does not dominate the H  i dynamics. Mass model fits to the rotation curve show that the dark matter (DM) halo is dominant at nearly all radii and has a central density ρ0 ≈ 0.1 M pc−3: ten times higher than typically found in dwarf irregular galaxies, but similar to the only other mass-modelled blue compact dwarf, NGC 2915. This large difference strongly indicates that there is little evolution between dwarf irregular and blue compact dwarf types. Instead, dominant DM haloes may regulate the morphology of dwarf galaxies by setting the critical surface density for disc star formation. Neither our data nor catalogue searches reveal any likely external trigger to the starburst in NGC 1705.  相似文献   

16.
17.
We conduct high-resolution collisionless N -body simulations to investigate the tidal evolution of dwarf galaxies on an eccentric orbit in the Milky Way (MW) potential. The dwarfs originally consist of a low surface brightness stellar disc embedded in a cosmologically motivated dark matter halo. During 10 Gyr of dynamical evolution and after five pericentre passages, the dwarfs suffer substantial mass loss and their stellar component undergoes a major morphological transformation from a disc to a bar and finally to a spheroid. The bar is preserved for most of the time as the angular momentum is transferred outside the galaxy. A dwarf spheroidal (dSph) galaxy is formed via gradual shortening of the bar. This work thus provides a comprehensive quantitative explanation of a potentially crucial morphological transformation mechanism for dwarf galaxies that operates in groups as well as in clusters. We compare three cases with different initial inclinations of the disc and find that the evolution is fastest when the disc is coplanar with the orbit. Despite the strong tidal perturbations and mass loss, the dwarfs remain dark matter dominated. For most of the time, the one-dimensional stellar velocity dispersion, σ, follows the maximum circular velocity, V max, and they are both good tracers of the bound mass. Specifically, we find that   M bound∝ V 3.5max  and     in agreement with earlier studies based on pure dark matter simulations. The latter relation is based on directly measuring the stellar kinematics of the simulated dwarf, and may thus be reliably used to map the observed stellar velocity dispersions of dSphs to halo circular velocities when addressing the missing satellites problem.  相似文献   

18.
19.
We present a catalogue of galaxies in Abell 3653 from observations made with the 2-degree field (2dF) spectrograph at the Anglo-Australian Telescope. Of the 391 objects observed, we find 111 are bona fide members of Abell 3653. We show that the cluster has a velocity of   cz = 32 214 ± 83  km s−1 ( z = 0.10 738 ± 0.00 027)  , with a velocity dispersion typical of rich, massive clusters of  σ cz = 880+66−54  . We find that the cD galaxy has a peculiar velocity of  683 ± 96  km s−1  in the cluster rest frame – some 7σ away from the mean cluster velocity, making it one of the largest and most significant peculiar velocities found for a cD galaxy to date. We investigate the cluster for signs of substructure, but do not find any significant groupings on any length scale. We consider the implications of our findings on cD formation theories.  相似文献   

20.
JHK s near-infrared photometry of stars in the Phoenix dwarf galaxy is presented and discussed. Combining these data with the optical photometry of Massey et al. allows a rather clean separation of field stars from Phoenix members. The discovery of a Mira variable ( P = 425 d), which is almost certainly a carbon star, leads to an estimate of the distance modulus of 23.10 ± 0.18 that is consistent with other estimates and indicates the existence of a significant population of age ∼2 Gyr. The two carbon stars of Da Costa have   M bol=−3.8  and are consistent with belonging to a population of similar age; some other possible members of such a population are identified. A Da Costa non-carbon star is  Δ K s∼ 0.3  mag brighter than these two carbon stars. It may be an asymptotic giant branch star of the dominant old population. The nature of other stars lying close to it in the   K s, ( J − K s)  diagram needs studying.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号