首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coupled CaCO3 dissolution-otavite (CdCO3) precipitation experiments have been performed to 1) quantify the effect of mineral coatings on dissolution rates, and 2) to explore the possible application of this coupled process to the remediation of polluted waters. All experiments were performed at 25°C in mixed-flow reactors. Various CaCO3 solids were used in the experiments including calcite, aragonite, and ground clam, mussel, and cockle shells. Precipitation was induced by the presence of Cd(NO3)2 in the inlet solution, which combined with aqueous carbonate liberated by CaCO3 dissolution to supersaturate otavite. The precipitation of an otavite layer of less than 0.01 μm in thickness on calcite surfaces decreases its dissolution rate by close to two orders of magnitude. This decrease in calcite dissolution rates lowers aqueous carbonate concentrations in the reactor such that the mixed-flow reactor experiments attain a steady-state where the reactive fluid is approximately in equilibrium with otavite, arresting its precipitation. In contrast, otavite coatings are far less efficient in lowering aragonite, and ground clam, mussel, and cockle shell dissolution rates, which are comprised primarily of aragonite. A steady-state is only attained after the precipitation of an otavite layer of 3-10 μm thick; the steady state CaCO3 dissolution rate is 1-2 orders of magnitude lower than that in the absence of otavite coatings. The difference in behavior is interpreted to stem from the relative crystallographic structures of the dissolving and precipitating minerals. As otavite is isostructural with respect to calcite, it precipitates by epitaxial growth directly on the calcite, efficiently slowing dissolution. In contrast, otavite’s structure is appreciably different from that of aragonite. Thus, it will precipitate by random three dimensional heterogeneous nucleation, leaving some pore space at the otavite-aragonite interface. This pore space allows aragonite dissolution to continue relatively unaffected by thin layers of precipitated otavite. Due to the inefficiency of otavite coatings to slow aragonite and ground aragonite shell dissolution, aragonite appears to be a far better Cd scavenging material for cleaning polluted waste waters.  相似文献   

2.
Using established methods of statistical mechanical calculation and a recent compilation of vibrational frequency data, we have computed oxygen isotope reduced partition function ratios (β values) for a large number of carbonate minerals. The oxygen isotope β values of carbonates are inversely correlated to both the mass and radius of the cation bonded to the carbonate anion but neither correlation is good enough to be used as a precise and accurate predictor of β values. There is an approximately 0.6% relative increase in the β values of aragonite per 10 kbar increase in pressure. These estimates of the pressure effect on β values are broadly similar to those deduced previously for calcite using the methods of mineral physics. In comparing the β values of our study with those derived recently from first-principles lattice dynamics calculations, we find near-perfect agreement for calcite and witherite (<0.3% deviation), reasonable agreement for dolomite (<0.9% deviation) and somewhat poorer agreement for aragonite and magnesite (1.5-2% deviation). In the system for which we have the most robust constraints, CO2-calcite, there is excellent agreement between our calculations and experimental data over a broad range of temperatures (0-900 °C). Similarly, there is good to excellent correspondence between calculation and experiment for most other low to moderate atomic mass carbonate minerals (aragonite to strontianite). The agreement is not as good for high atomic mass carbonates (witherite, cerussite, otavite). In the case of witherite and cerussite, the discrepancy may be due, in part, to our calculation methodology, which does not account for the effect of cation mass on the magnitude of vibrational frequency shifts associated with heavy isotope substitution. However, the calculations also reveal an incompatibility between the high- and low-temperature experimental datasets for witherite and cerussite. Specifically, the shapes of fractionation factor versus 1/T2 curves in the calcite-witherite and calcite-cerussite systems do not conform to the robust constraints on the basic shape of these curves provided by theory. This suggests that either the high- or low-temperature datasets for both minerals is in error. Dolomite-calcite fractionation factors derived from our calculations fall within the wide range of fractionations for this system given by previous experimental and natural sample studies. However, our compilation of available low-temperature (25-80 °C) experimental data reveal an unusual temperature dependence of fractionations in this system; namely, the data indicate an increase in the magnitude of fractionations between dolomite (or proto-dolomite) and calcite with increasing temperature. Such a trend is incompatible with theory, which stipulates that fractionations between carbonate minerals must decrease monotonically with increasing temperature. We propose that the anomalous temperature dependence seen in the low-temperature experimental data reflect changes in the crystallinity and degree of cation ordering of the dolomite phase over this temperature interval and the effect these changes have on the vibrational frequencies of dolomite. Similar effects may be present in natural systems at low-temperature and must be considered in applying experimental or theoretical fractionation data to these systems. In nearly all cases, carbonate mineral-calcite fractionation factors given by the present calculations are in as good or better agreement with experimental data than are fractionations derived from semi-empirical bond strength methods.  相似文献   

3.
The Devonian (ca. 385–360 Ma) Kola Alkaline Province includes 22 plutonic ultrabasic–alkaline complexes, some of which also contain carbonatites and rarely phoscorites. The latter are composite silicate–oxide–phosphate–carbonate rocks, occurring in close space-time genetic relations with various carbonatites. Several carbonatites types are recognized at Kola, including abundant calcite carbonatites (early- and late-stage), with subordinate amounts of late-stage dolomite carbonatites, and rarely magnesite, siderite and rhodochrosite carbonatites. In phoscorites and early-stage carbonatites the rare earth elements (REE) are distributed among the major minerals including calcite (up to 490 ppm), apatite (up to 4400 ppm in Kovdor and 3.5 wt.% REE2O3 in Khibina), and dolomite (up to 77 ppm), as well as accessory pyrochlore (up to 9.1 wt.% REE2O3) and zirconolite (up to 17.8 wt.% REE2O3). Late-stage carbonatites, at some localities, are strongly enriched in REE (up to 5.2 wt.% REE2O3 in Khibina) and the REE are major components in diverse major and minor minerals such as burbankite, carbocernaite, Ca- and Ba-fluocarbonates, ancylite and others. The rare earth minerals form two distinct mineral assemblages: primary (crystallized from a melt or carbohydrothermal fluid) and secondary (formed during metasomatic replacement). Stable (C–O) and radiogenic (Sr–Nd) isotopes data indicate that the REE minerals and their host calcite and/or dolomite have crystallized from a melt derived from the same mantle source and are co-genetic.  相似文献   

4.
The data given in the literature for the infra-red identification of carbonate minerals is summarised, and a technique is described which may be used to identify magnesite, smithsonite, dolomite, rhodochrosite, calcite, aragonite, strontianite, cerussite and witherite by means of their infra-red absorption bands. Two quantitative applications of the use of infra-red spectroscopy are considered and techniques are outlined for the determination of calcite-dolomite ratios in carbonate rocks, and calcite-aragonite ratios in shell material.  相似文献   

5.
Drilling through the Palaeoproterozoic bedrock at Forsmark, central Sweden, during the site investigation for a potential geological repository of highly radioactive nuclear waste has provided high quality drill-core material from the upper 1 km of the Fennoscandian Shield. Analyses of stable isotopes (δ13C, δ18O, δ34S, 87Sr/86Sr), rare earth elements and fluid inclusions in fracture filling calcite and pyrite from these drill cores have resulted in the discrimination of several episodes of fracture mineralisations. These events represent migration of fluids during a wide range of conditions, ranging from high-temperature hydrothermal to present-day groundwater circulation. Four major events have been distinguished: 1) Precipitation of epidote, chlorite and quartz under hydrothermal conditions (T > 150–200 °C) during the Proterozoic, sometime between 1.8 and 1.1 Ga. 2) Hydrothermal circulation at temperatures close to 200 °C with precipitation of adularia, albite, prehnite, laumontite, calcite and chlorite. Most of these minerals precipitated during a tectonothermal event between 1.1 and 1.0 Ga, possibly in response to far-field effects of the Sveconorwegian orogeny. 3) Precipitation of mainly quartz, calcite, pyrite and asphaltite occurred during the Palaeozoic, at temperatures between 60 and 190 °C (mainly at < 100 °C). Mixing of a fluid emanating from an organic rich overlying sedimentary cover and a deep basinal fluid from the crystalline bedrock is suggested to have caused this precipitation, possibly as a far-field response to the Caledonian orogeny and/or the development of the Caledonian foreland basin. 4) The youngest generation of fracture minerals is associated with formation of clay minerals and calcite with minor occurrences of pyrite and goethite. These minerals have probably precipitated episodically during a long time period (possibly from the Late Palaeozoic to the present) from various fluids at low temperature conditions (< 50 °C). Few calcites in equilibrium with the present groundwater suggest that the ongoing precipitation of calcite is very limited.  相似文献   

6.
Lateral Force Microscopy (LFM) studies were carried out on cleaved calcite sections in contact with solutions supersaturated with respect to otavite (CdCO3) or calcite-otavite solid solutions (SS) as a means to examine the potential for future application of LFM as a nanometer-scale mineral surface composition mapping technique. Layer-by-layer growth of surface films took place either by step advancement or by a surface nucleation and step advancement mechanisms. Friction vs. applied load data acquired on the films and the calcite substrate were successfully fitted to the Johnson Kendall Roberts (JKR) model for single asperity contacts. Following this model, friction differences between film and substrate at low loads were dictated by differences in adhesion, whereas at higher load they reflect differences in contact shear strength. In most experiments at fixed load, the film showed higher friction than the calcite surface, but the friction-load dependence for the different surfaces revealed that at low loads (0–40 nN), a calcian otavite film has lower friction than calcite; a result that is contrary to earlier LFM reports of the same system. Multilayer films of calcian-otavite displayed increasing friction with film thickness, consistent with the expectation that the film surface composition will become increasingly Cd-rich with increasing thickness. Both load- and thickness-dependence trends support the hypothesis that the contact shear strength correlates with the hydration enthalpy of the surface ions, thereby imparting friction sensitivity in the LFM to mineral-water interface composition.  相似文献   

7.
The geological and mineralogical data on the Chailag-Khem F-Ba-Sr-REE occurrence in the Western Sayan Range, Russia, are discussed. The chemical compositions of rocks, ores, and minerals (ICP-MS, Link) are reported. The occurrence is localized in a tectonic crush zone composed of Cambrian quartz-sericite slates intruded by quartz syenite porphyry. Ore mineralization occurs as veins, cement of tectonic breccia, and metasomatic disseminations in host rocks. Massive ore consists of calcite, strontianite, and quartz; impregnations of euhedral fluorite, ankerite, and bastnaesite crystals; and fine-grained barite aggregate. Accessory minerals include parisite, synchysite, barytocelestine, sulfides, rutile, and uraninite. Late metasomatic calcite and strontianite segregations and veinlets are abundant. In genetic, mineralogical, and geochemical features, the Chailag-Khem occurrence is similar to the Late Mesozoic carbonatite deposits of Central Tuva, of which the Karasug Fe-F-Ba-Sr-REE deposit is the largest and best known. All carbonatite deposits and occurrences are located within a longitudinal zone transverse to the major tectonic elements of the region.  相似文献   

8.
The surface effect on the isotopic fractionation between CO2 and calcite, dolomite and witherite has been studied through gas-solid exchange experiments. Oxygen isotope fractionation between surface calcite and CO2 was found to be higher by 5–6%. than the fractionation between bulk calcite and CO2.Similar studies were made using dolomite and witherite. The dolomite-calcite and witheritecalcite fractionation evaluated through the surface exchange with CO2 were found to be close to values determined by other workers under controlled conditions in the laboratory.  相似文献   

9.
The late Cretaceous-lower Tertiary hydrothermal alteration of serpentinized peridotite in the Semail ophiolite has formed two distinct types of listwaenite. Type I is characterized by the presence of calcite (Type IA) or dolomite (Type IB)+fuchsite±spinel. Type II is dominated by silicate minerals (quartz, chlorite, fuchsite)±calcite+dolomite±magnetite±apatite±plagioclase. Most listwaenites occur as veins along thrust fault zones within the ophiolite mélange. High Cr and Ni contents, abundant occurrence of Cr-spinel within a matrix of red-brown ferruginous carbonates within a micro-vein network of goethite, and the relics of mesh texture indicate an ultramafic protolith. Type I and II listwaenites represent different stages of hydrothermal alteration. The mineralogical and chemical distinctions of both types are the response to the extent of the reactions between the protoliths and the solutions leading to different stages of metasomatic replacement. The hydrothermal fluids involved in the formation of Type I listwaenite were enriched in Ca, Mg, and CO2, whereas Type II listwaenite bodies were formed from a hydrothermal fluid enriched in SiO2. REE and trace elements in both listwaenite types were extracted in part from adjoining peridotite. No Au anomaly in the study areas has been detected.  相似文献   

10.
Iron and Sr bearing phases were thoroughly investigated by means of spectrometric and microscopic techniques in Callovian–Oxfordian (COX) samples originating from the ANDRA Underground Research Laboratory (URL) in Bure (France). Strontium was found to be essentially associated with celestite, whereas Fe was found to be distributed over a wide range of mineral phases. Iron was mainly present as Fe(II) in the studied samples (∼93% from Mössbauer results). Most of the Fe(II) was found to be in pyrite, sideroplesite/ankerite and clay minerals. Iron(III), if present, was associated with clay minerals (probably illite, illite-smectite mixed layer minerals and chlorite). No Fe(III) oxy(hydro)xide could be detected in the samples. Strontianite was not observed either. Based on these observations, it is likely that the COX porewater is in equilibrium with the following carbonate minerals, calcite, dolomite and ankerite/sideroplesite, but not with strontianite. It is shown that this equilibrium information can be combined with clay cation exchange composition information in order to give direct estimates or constraints on the solubility products of the carbonate minerals dolomite, siderite and strontianite. As a consequence, an experimental method was developed to retrieve the cation exchanged Fe(II) in very well preserved COX samples.  相似文献   

11.
Calcium concentration and calcite supersaturation (Ω) needed for calcium carbonate nucleation and crystal growth in Pyramid Lake (PL) surface water were determined during August of 1997, 2000, and 2001. PL surface water has Ω values of 10–16. Notwithstanding high Ω, calcium carbonate growth did not occur on aragonite single crystals suspended PL surface water for several months. However, calcium solution addition to PL surface-water samples caused reproducible calcium carbonate mineral nucleation and crystal growth. Mean PL surface-water calcium concentration at nucleation was 2.33 mM (n = 10), a value about nine times higher than the ambient PL surface-water calcium concentration (0.26 mM); mean Ω at nucleation (109 with a standard deviation of 8) is about eight times the PL surface-water Ω. Calcium concentration and Ω regulated the calcium carbonate formation in PL nucleation experiments and surface water. Unfiltered samples nucleated at lower Ω than filtered samples. Calcium concentration and Ω at nucleation for experiments in the presence of added particles were within one standard deviation of the mean for all samples. Calcium carbonate formation rates followed a simple rate expression of the form, rate (mM/min) = A (Ω) + B. The best fit rate equation “Rate (Δ mM/Δ min) = −0.0026 Ω + 0.0175 (r = 0.904, n = 10)” was statistically significant at greater than the 0.01 confidence level and gives, after rearrangement, Ω at zero rate of 6.7. Nucleation in PL surface water and morphology of calcium carbonate particles formed in PL nucleation experiments and in PL surface-water samples suggest crystal growth inhibition by multiple substances present in PL surface water mediates PL calcium carbonate formation, but there is insufficient information to determine the chemical nature of all inhibitors.  相似文献   

12.
The isolated volcano-sedimentary sequences of the Punagarh and Sindreth Groups occur along the western flank of the Delhi Fold Belt in northwest India, and include mafic rocks (pillow basalts and dolerite dykes) that are dominantly olivine tholeiites with minor quartz-normative and alkali basalts. Sindreth samples appear to have higher primary TiO2 and P2O5 abundances relative to those from Punagarh. Both suites of mafic rocks show variable, but profound hydrothermal alteration effects, with loss on ignition (LOI) values up to 10.3 wt.%, and extensive secondary minerals including albite, sericite, chlorite and calcite. Despite this, there is excellent preservation of magmatic textures, but there has been extensive albitization of plagioclase phenocrysts, a hallmark of hydrothermal alteration processes in oceanic crust. Supporting evidence for such hydrothermal alteration comes from correlations of LOI abundances with CaO/Na2O, and evidence for U mobility is apparent on diagrams of Nb/Th vs. Nb/U. Felsic volcanic rocks (rhyolite, dacite) interlayered with the Sindreth basalts yield U–Pb zircon ages (TIMS method) between 761 ± 16 and 767 ± 3 Ma, which we interpret as representing the time of primary magmatic activity. We infer that the volcano-sedimentary rocks of the Punagarh also formed at this time, on the basis of similarities in lithology, stratigraphy, field relations and geochemistry. Intermediate granitoid rocks yield older U–Pb ages of 800 ± 2 and 873 ± 3 Ma, which we correlate with the post-Delhi Supergroup Erinpura Granites. Taken together, the features of the Punagarh and Sindreth Groups are consistent with their formation in a back-arc basin setting. Their coevality with other magmatic systems in NW India (Malani Igneous Suite), the Seychelles and Madagascar, for which a continental arc setting has also been proposed, supports the notion of an extensive convergent margin in western Rodinia at 750–770 Ma.  相似文献   

13.
The calcite cement in the Lower Ordovician Majiagou Formation in the Ordos basin in northern China can be subdivided into three groups based on preliminary results of oxygen and carbon isotopes and fluid inclusion microthermometry. Group 1 has low oxygen isotopes (− 14‰ to − 18‰), low Th values (92–103 °C), and low salinities (1.7–4.9 wt.% NaCl equivalent) and is interpreted to have precipitated during early burial from porewater influenced by meteoric water. Group 2 has much higher oxygen isotope values (− 5‰ to − 8‰), which, coupled with the higher Th values (136–151 °C), suggest that the calcite was precipitated from fluids that were significantly enriched in 18O, possibly resulting from fluid–rock reaction during burial. Group 3 occurring along fractures is characterized by high salinities (21–28 wt.% NaCl equivalent) and is interpreted to have been precipitated from locally preserved residual evaporitic brines. The occurrence of primary hydrocarbon inclusions and its low carbon isotopes (− 11‰ to − 15‰) suggest that precipitation of group 3 calcite took place in the presence of hydrocarbons.  相似文献   

14.
紫阳黄柏树湾毒重石矿床和竹山文峪河毒重石-重晶石矿床呈层状或似层状产于下寒武统下部或其相当层位的硅质岩中,矿体受岩性和岩相控制作用明显.对矿床中毒重石、钡解石和方解石的锶同位素及碳氧同位素的研究结果表明,形成这些矿物的碳主要来自沉积物中的生物有机质在早期成岩阶段经降解、缩合及脱羧基作用所形成的烃类物质或生物气;而锶主要为沉积物孔隙水中海水锶与沉积物中火山碎屑物质蚀变过程中所释放的锶的混合.毒重石形成于早期成岩阶段沉积物的孔隙水介质中,形成毒重石的成矿流体主要为早期成岩阶段沉积物中由海水、有机质组分和火山物质组分相互叠加和混合而组成的孔隙水有机成矿流体.毒重石矿石中广泛发育的生物碎屑及粒屑结构说明生物作用通过生物成因重晶石 (bio- barite)的形式将海水中的 Ba2 浓集并沉降于海底,形成钡矿床的初始富集体.因而,海水中生物作用和沉积物的早期成岩作用是形成本区毒重石矿床的主要机制.  相似文献   

15.
Summary ?Orangeite occurring as a complex series of dikes at Swartruggens (South Africa), is host to a diversity of accessory minerals, the most common of which are apatite, barite and calcite. Less common, but important phases are perovskite, wadeite, an unidentified Ca–Ti–Fe-silicate, strontianite, unidentified Ca-REE phosphate, zircon, rutile, titaniferous magnetite, quartz and diverse sulphides. The accessory minerals show wide variations in their mode in different segments of the dike suite as a consequence of crystal sorting during flow differentiation. Compositional data are given for apatite, barite, calcite, perovskite, wadeite and the unidentified Ca–Ti–Fe-silicate. The accessory mineral suite is similar to that found in lamproites but is sufficiently distinct in composition and paragenesis to preclude inclusion with that clan. Differences include the common presence of groundmass calcite, barite and serpentine in the orangeite and the absence of typomorphic minerals (leucite, sanidine, richterite) of the lamproite clan. Received January 15, 2001; revised version accepted October 15, 2001  相似文献   

16.
Gold mineralization at Jonnagiri, Dharwar Craton, southern India, is hosted in laminated quartz veins within sheared granodiorite that occur with other rock units, typical of Archean greenstone–granite ensembles. The proximal alteration assemblage comprises of muscovite, plagioclase, and chlorite with minor biotite (and carbonate), which is distinctive of low- to mid-greenschist facies. The laminated quartz veins that constitute the inner alteration zone, contain muscovite, chlorite, albite and calcite. Using various calibrations, chlorite compositions in the inner and proximal zones yielded comparable temperature ranges of 263 to 323 °C and 268 to 324 °C, respectively. Gold occurs in the laminated quartz veins both as free-milling native metal and enclosed within sulfides. Fluid inclusion microthermometry and Raman spectroscopy in quartz veins within the sheared granodiorite in the proximal zone and laminated auriferous quartz veins in inner zone reveal the existence of a metamorphogenic aqueous–gaseous (H2O–CO2–CH4 + salt) fluid that underwent phase separation and gave rise to gaseous (CO2–CH4), low saline (~ 5 wt.% NaCl equiv.) aqueous fluids. Quartz veins within the mylonitized granodiorites and the laminated veins show broad similarity in fluid compositions and P–T regime. Although the estimated P–T range (1.39 to 2.57 kbar at 263 to 323 °C) compare well with the published P–T values of other orogenic gold deposits in general, considerable pressure fluctuation characterize gold mineralization at Jonnagiri. Factors such as fluid phase separation and fluid–rock interaction, along with a decrease in f(O2), were collectively responsible for gold precipitation, from an initial low-saline metamorphogenic fluid. Comparison of the Jonnagiri ore fluid with other lode gold deposits in the Dharwar Craton and major granitoid-hosted gold deposits in Australia and Canada confirms that fluids of low saline aqueous–carbonic composition with metamorphic parentage played the most dominant role in the formation of the Archean lode gold systems.  相似文献   

17.
The Ortosa deposit (NW Spain) in the northern part of the Rio Narcea Gold Belt (RNGB) is located in the Cantabrian Zone of the Iberian Massif. This zone corresponds to the westernmost exposure of the European Hercynides. The deposit is hosted by marine shales, siltstones, calcareous siltstones and interbedded sandy limestones of the upper part of the Silurian Furada Formation. These rocks are intruded by a main stock and numerous sills and dikes consisting of a reduced, ilmenite-bearing quartz-monzodiorite (Ortosa intrusion). Skarn metasomatism and associated gold mineralization overprinted these sedimentary and igneous rocks, forming endo- and exoskarns.The earliest stage of alteration involved potassium metasomatism from which metasomatic biotite developed in the hornfels around the intrusion. In the endoskarn, the first metasomatic mineral to form is actinolite. Subsequently, quartz, pyroxene (Hd30–45), and sulfides (mainly arsenopyrite and pyrrhotite) formed, followed by a second generation of amphibole (ferroactinolite and ferrohornblende). The exoskarn is a pyroxene-garnet skarn, which is often banded. The prograde minerals are pyroxene (Hd10–30) and grossular garnet. The retrograde mineralogy consists of hedenbergite-rich pyroxene (Hd50–87), amphibole (ferroactinolite–ferrohornblende), and the metallic minerals with minor fluorapatite, K-feldspar, albite, epidote–clinozoisite, vesuvianite and calcite. A final stage of retrograde alteration is characterized by calcite, quartz, and chlorite.Pyrrhotite and arsenopyrite are the more abundant metallic minerals, and löllingite, chalcopyrite, pyrite and sphalerite are present in smaller amounts. The gold occurs as native gold and maldonite, and is accompanied by hedleyite, native bismuth, and bismuthinite. These Au–Bi–Te mineral assemblages occupy cavities and fractures in the arsenopyrite or in the pyrrhotite.Estimated physiochemical conditions of formation based on the composition and stability fields of major calc-silicate and sulfide minerals indicate that the hedenbergite-rich pyroxene and the earliest sulfides (löllingite–pyrrhotite–arsenopyrite) crystallized at temperatures between 470 and 535°C at low log fS2 between −10 and −6.5 and low log fO2 of −22. The Ortosa skarns can be included in the reduced gold skarn subtype defined by Meinert (Mineralogical Association of Canada, Quebec city, Que., Canada, 1998, 26,359–414 ).  相似文献   

18.
Numerous mineral veins are hosted in a body of teschenite which is situated within the Lower Cretaceous flysch siliciclastics of the Silesian Unit at Tichá. Mineralogy, fluid inclusions, stable isotopes and trace elements have been studied in order to assess the origin of this mineralization. Three stages of vein cementation have been recognized, each of them being characterized by distinct mineral composition and genetic conditions. The first stage is composed of titanite, aegirine-augite to aegirine, annite, analcime and strontian apatite. These minerals originated from NaCl-rich, CaCl2-poor magmatic brine (total fluid salinities range between 47 and 57 wt%), leaving after crystallization of host teschenite in low-pressure (<1 kbar) environment. Crystallization temperatures reached ~390–510 °C for early phases, titanite and aegirine-augite. The second stage is formed by calcite, chlorite, dolomite, siderite, strontianite, quartz, pyrite and sphalerite. The parent fluids were low-salinity (0.5–4.5 wt% NaCl eq.) aqueous solutions with low content of strong REE-complexing ligands, that were progressively cooled during mineral precipitation (up to ~190 °C at the beginning, ~90 °C at the end of crystallization). These fluids are interpreted to be predominantly of external origin, derived from surrounding sedimentary sequences during diagenetic dewatering of clay minerals. The highly positive δ18O and near-zero δ13C values indicate an interaction of fluids with sedimentary carbonates. The third stage is formed by a dense net of calcite veinlets, which probably originated during tectonic deformations connected with orogenetic movements during the Tertiary. The source of strontium for first stage mineralization was probably related to the special conditions of magmatic evolution of the host teschenite, whereas strontium for second stage minerals could have been remobilized during hydrothermal alteration from earlier teschenite-hosted mineral phases and/or limestone.  相似文献   

19.
A. Proyer  E. Mposkos  I. Baziotis  G. Hoinkes 《Lithos》2008,104(1-4):119-130
Four different types of parageneses of the minerals calcite, dolomite, diopside, forsterite, spinel, amphibole (pargasite), (Ti–)clinohumite and phlogopite were observed in calcite–dolomite marbles collected in the Kimi-Complex of the Rhodope Metamorphic Province (RMP). The presence of former aragonite can be inferred from carbonate inclusions, which, in combination with an analysis of phase relations in the simplified system CaO–MgO–Al2O3–SiO2–CO2 (CMAS–CO2) show that the mineral assemblages preserved in these marbles most likely equilibrated at the aragonite–calcite transition, slightly below the coesite stability field, at ca. 720 °C, 25 kbar and aCO2 ~ 0.01. The thermodynamic model predicts that no matter what activity of CO2, garnet has to be present in aluminous calcite–dolomite-marble at UHP conditions.  相似文献   

20.
The complex vein associations hosted in southern Sulu ultrahigh-pressure (UHP) eclogites contain quartz ± omphacite (or jadeite) ± kyanite ± allanite ± zoisite ± rutile ± garnet. These minerals have chemical compositions similar to those of host eclogites. Inclusions of polycrystalline quartz pseudomorphs after coesite were identified in vein allanite and garnet, and coesite inclusions were found in vein zircon. These facts suggest that the veins together with host eclogites have been subjected to synchronous UHP metamorphism. The vein minerals contain relatively high concentrations of rare earth elements (REE), high-field-strength elements (HFSE) and transition metal elements (TME). A kyanite-quartz vein has a whole-rock composition similar to adjacent UHP metamorphic granitic gneisses. Abundant primary multi-solid fluid inclusions trapped within UHP vein minerals contain complex daughter minerals of muscovite, calcite, anhydrite, magnetite, pyrite, apatite, celestite and liquid and gas phase of H2O with solids up to 30-70% of the inclusion volume. The presence of daughter minerals anhydrite and magnetite indicates the subduction fluids were oxidizing, and provides a possible interpretation for the high oxygen fugacity of subduction zone magmas. These characteristics imply that the UHP vein minerals were crystallized from supercritical silicate-rich aqueous fluids that were in equilibrium with peak-UHP minerals, and that the fluids in deeply subducted continental crust may contain very high concentrations of silicate as well as HREE, HFSE and TME. Such fluids might have resulted in major fractionation between Nb and Ta, i.e. the UHP fluids have subchondritic Nb/Ta values, whereas the host eclogites after extraction of the fluids have suprachondritic Nb/Ta values. Therefore, voluminous residual eclogites with high Nb/Ta ratios may be the complementary suprachondritic reservoir capable of balancing the subchondritic depleted mantle and continental crust reservoirs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号