首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
It is confirmed that the penumbral bright grains are moving towards the sunspots umbra. We find different proper motions of 0.08 to 0.33 km s–1 for different penumbrae and different reduction methods. The lifetimes of these bright grains are about 1.5 to 3 hr depending on the position in the penumbra.  相似文献   

2.
Abstract– Neon was measured in 39 individual olivine (or olivine‐rich) grains separated from individual chondrules from Dhajala, Bjurböle, Chainpur, Murchison, and Parsa chondrites with spallation‐produced 21Ne the result of interaction of energetic particle irradiation. The apparent 21Ne cosmic ray exposure (CRE) ages of most grains are similar to those of the matrix with the exception of three grains from Dhajala and single grains from Bjurböle and Chainpur, which show excesses, reflecting exposure to energetic particles prior to final compaction of the object. Among these five grains, one from chondrule BJ2A5 of Bjurböle shows an apparent excess exposure age of approximately 20 Ma and the other four from Dhajala and Chainpur have apparent excesses, described as an “age,” from 2 to 17 Ma. The precompaction irradiation effects of grains from chondrules do not appear to be different from the effects seen in olivine grains extracted from the matrix of CM chondrites. As was the case for the matrix grains, there appears to be insufficient time for this precompaction irradiation by the contemporary particle sources. The apparent variations within single chondrules appear to constrain precompaction irradiation effects to irradiation by lower energy solar particles, rather than galactic cosmic rays, supporting the conclusion derived from the precompaction irradiation effects in CM matrix grains, but for totally different reasons. This observation is consistent with Chandra X‐Ray Observatory data for young low‐mass stars, which suggest that our own Sun may have been 105 times more active in an early naked T‐Tauri phase ( Feigelson et al. 2002 ).  相似文献   

3.
Composition of the Comet dust obtained by the dust impact analyzer on the Halley probes indicated that the comet dust is a mixture of silicate and carbonaceous material. The collected interplanetary dust particles (IDP's) are fluffy and composite, having grains of several different types stuck together. Using discrete dipole approximation (DDA) we study the scattering properties of composite grains. In particular, we study the angular distribution of the scattered intensity and linear polarization of composite grains. We assume that the composite grains are made up of a host silicate sphere/spheroid with the inclusions of graphite. Results of our calculations on the composite grains show that the angle of maximum polarization shifts, and the degree of polarization varies with the volume fraction of the inclusions. We use these results on the composite grains to interpret the observed scattering in cometary dust.  相似文献   

4.
We report trace element analyses by laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS) of metal grains from nine different CR chondrites, distinguishing grains from chondrule interior (“interior grains”), chondrule surficial shells (“margin grains”), and the matrix (“isolated grains”). Save for a few anomalous grains, Ni‐normalized trace element patterns are similar for all three petrographic settings, with largely unfractionated refractory siderophile elements and depleted volatile Au, Cu, Ag, S. All three types of grains are interpreted to derive from a common precursor approximated by the least‐melted, fine‐grained objects in CR chondrites. This also excludes recondensation of metal vapor as the origin of the bulk of margin grains. The metal precursors were presumably formed by incomplete condensation, with evidence for high‐temperature isolation of refractory platinum‐group‐element (PGE)‐rich condensates before mixing with lower temperature PGE‐depleted condensates. The rounded shape of the Ni‐rich, interior grains shows that they were molten and that they equilibrated with silicates upon slow cooling (1–100 K h?1), largely by oxidation/evaporation of Fe, hence their high Pd content, for example. We propose that Ni‐poorer, amoeboid margin grains, often included in the pyroxene‐rich periphery common to type I chondrules, result from less intense processing of a rim accreted onto the chondrule subsequent to the melting event recorded by the interior grains. This means either that there were two separate heating events, which formed olivine/interior grains and pyroxene/margin grains, respectively, between which dust was accreted around the chondrule, or that there was a single high‐temperature event, of which the chondrule margin records a late “quenching phase,” in which case dust accreted onto chondrules while they were molten. In the latter case, high dust concentrations in the chondrule‐forming region (at least three orders of magnitude above minimum mass solar nebula models) are indicated.  相似文献   

5.
Two processes have been proposed to explain observations of crystalline silicate minerals in comets and in protostellar sources, both of which rely on the thermal annealing of amorphous grains. First, high temperatures generated by nebular shock processes can rapidly produce crystalline magnesium silicate grains and will simultaneously produce a population of crystalline iron silicates whose average grain size is ∼10-15% that of the magnesium silicate minerals. Second, exposure of amorphous silicate grains to hot nebular environments can produce crystalline magnesium silicates that might then be transported outward to regions of comet formation. At the higher temperatures required for annealing amorphous iron silicates to crystallinity the evaporative lifetime of the grains is much shorter than a single orbital period where such temperatures are found in the nebula. Thermal annealing is therefore unable to produce crystalline iron silicate grains for inclusion into comets unless such grains are very quickly transported away from the hot inner nebula. It follows that observation of pure crystalline magnesium silicate minerals in comets or protostars is a direct measure of the importance of simple thermal annealing of grains in the innermost regions of protostellar nebulae followed by dust and gas transport to the outer nebula. The presence of crystalline iron silicates would signal the action of transient processes such as shock heating that can produce crystalline iron, magnesium and mixed iron-magnesium silicate minerals. These different scenarios result in very different predictions for the organic content of protostellar systems.  相似文献   

6.
The rate of formation of molecular hydrogen from hydrogen atoms adsorbed on grains is analyzed, assuming that the grains are single crystals, polycrystalline or amorphous. On polycrystalline grains, and on graphite platelets, this rate could be orders of magnitude lower than on single crystal grains. The same is true for amorphous grains because there, at low temperatures, only atoms absorbed on neighboring sites can form molecules. Suitable formulae are derived and compared with the classical results for single crystal grains. Quantitative results are given for crystalline and amorphous ice, but with small changes these should also be valid for other solids. The rates for amorphous grains can approximate, within a factor of 10 or so, those for crystalline grains if the density of H atoms is high and the density of H2 molecules is low and only when the temperature of the grains satisfies a relation which for ice and graphite leads to a value in the proximity of 15–17 K. This maximum rate occurs only a degree or so above the temperature at which the grains are totally covered by an H2 layer and the reaction ceases. Furthermore, for a constant number density of grains, the rates on amorphous grains are second order while those on crystalline grains are first order. Both these circumstances predict amorphous grains to lead to H2 clouds with irregular and sharply delineated features in contrast to more uniform clouds formed on crystalline grains.  相似文献   

7.
In order to study the effect of dust extinction on the afterglow of gamma-ray bursts (GRBs), we carry out numerical calculations with high precision based on the rigorous Mie theory and the latest optical properties of interstellar dust grains, and analyze the different extinction curves produced by dust grains with different physical parameters. Our results indicate that the absolute extinction quantity is substantially determined by the medium density and metallicity. However, the shape of the extinction curve is mainly determined by the size distribution of the dust grains. If the dust grains aggregate to form larger ones, they will cause a flatter or grayer extinction curve with lower extinction quantity. On the contrary, if the dust grains are disassociated to smaller ones due to some uncertain processes, they will cause a steeper extinction curve with larger amount of extinction. These results might provide an important insight into understanding the origin of the optically dark GRBs.  相似文献   

8.
Abstract— Condensation calculations for C-rich circumstellar envelopes are used to model the condensation sequence of C, TiC, and SiC, and trace-element patterns observed in circumstellar SiC grains. Some properties of carbon star envelopes are briefly discussed, and condensation temperatures for major and trace elements are computed for a wide array of total pressure, C/O-ratios, and s-process elemental abundances. The comparison of calculated patterns for trace-element solid solutions in SiC with the different observed patterns measured by Amari et al. (1995) yields an association of the grains to at least three different groups of carbon stars.  相似文献   

9.
We use Mie scattering theory to determine the expected thermal emission from dust grains in cometary comae and apply these results to mid-infrared images of comet Hyakutake (C/1996 B2) obtained preperihelion in 1996 March. Calculations were performed for dust grains in the size range from 0.1 to 10 micrometers for two different compositions: amorphous olivine (a silicate glass) and an organic residue mixture. The resulting emission efficiencies are complicated functions of wavelength and particle size and are significantly different for the two materials in question. The Hyakutake data set consists of three nights of high-resolution imaging (100-150 km pixel-1 at the comet) of the inner coma at 8.7, 11.7, 12.5, and 19.7 micrometers. Attempts to fit the observed colors (ratios of fluxes at different wavelengths) using a single grain composition failed. However, fits to the data were achieved for all three nights using a mixture of approximately 1 micrometer olivine grains and approximately 7 micrometers organic grains. The resulting olivine mass fraction was between 8% and 16% of the total dust mass-loss rate. We also estimate the radius of the nucleus to be r = 2.1 +/- 0.4 km.  相似文献   

10.
This thermal annealing experiment at 1000 K for up to 167 h used a physical mixture of vapor phase‐condensed magnesiosilica grains and metallic iron nanograins to test the hypothesis that a mixture of magnesiosilica grains and an Fe‐source would lead to the formation of ferromagnesiosilica grains. This exploratory study found that coagulation and thermal annealing of amorphous magnesiosilica and metallic grains yielded ferromagnesiosilica grains with the Fe/(Fe + Mg) ratios in interplanetary dust particles. Furthermore, decomposition of brucite present in the condensed magnesiosilica grains was the source for water and the cause of different iron oxidation states, and the formation of amorphous Fe3+‐ferrosilica, amorphous Fe3+‐Mg, Fe‐silicates, and magnesioferrite during thermal annealing. Fayalite and ferrosilite that formed from silica/FeO melts reacted with forsterite and enstatite to form Mg, Fe‐silicates. The presence of iron in different oxidation states in extraterrestrial materials almost certainly requires active asteroid‐like parent bodies. If so, the possible presence of trivalent Fe compounds in comet P/Halley suggests that Halley‐type comets are a mixture of preserved presolar and processed solar nebula dust. The results from this thermal annealing experiment further suggest that the Fe‐silicates detected in the impact‐induced ejecta from comet 9P/Temple 1 might be of secondary origin and related to the impact experiment or to processing in a regolith.  相似文献   

11.
The continuum spectra of comets carry information concerning the physical and chemical properties of solid coma grains. Although it is not feasible to use the continuum spectra to uniquely characterize the solid grains, variations among the continua of different comets may reveal subtle differences in their respective grain populations. We have taken and reduced optical spectra of four comets in the wavelength range 3700–7300 Å using a single observing system and reduction procedure. The continua all appear reddened with respect to the solar spectrum. The amount of reddening is consistent with a prevalence of ~2-μm-sized grains in all four comets, if the refractive indices of the grains are approximately equal to those of terrestrial rocks. Significant color differences were measured among the comets. Different intrinsic grain properties are suggested since the scattering geometries were very similar. The amount of reddening does not appear to be correlated with the amount of dust in the coma.  相似文献   

12.
M. Hersé 《Solar physics》1979,63(1):35-60
A balloon-borne telescope has been flown two times at altitudes higher than 30 km. We obtained high resolution pictures of the Sun at 200 nm, 210 nm, 310 nm, and 460 nm. The spatial resolution for high contrast objects was 0.5 arc sec.At 460 and 310 nm, granulation and faculae are visible. At 200 nm we find only bright grains of a mean area of 4 arc sec2 and a mean contrast of 47%. Though these grains are visible to the center of the disk, we identify them as facular grains. A statistical study of these grains permits me to derive a facular grain model with a temperature excess of 180 K with respect to the surrounding photosphere starting at the altitude of 180 km. This model successfully predicts the grain observed contrast at the different wavelengths and the intensity excess.  相似文献   

13.
This paper deals with obtaining the maximum size of cometary grains ejected from nuclei of different shapes. Two mechanisms in terms of grain ejection from comets are taken into consideration. The first one is dragging of particles by outflowing gas molecules released by gentle sublimation from the comets. The second one is related with gas jets from the cavities in a nucleus by cometary jet‐like phenomena. We focused on ellipsoidal shapes of cometary nuclei but with different flattening. Calculations have been carried out for a large range of cometary parameters. It has been shown that for fixed mass of the nucleus the maximum size of grains is an increasing function of the nucleus flattening. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
15.
Abstract— Experimental studies of coalescence between Mg grains and SiO grains in smoke reveal the direct production of crystalline forsterite grains. The present results also show that different materials can be produced by grain‐grain collisions, which have been considered one of the models of grain formation in the interstellar medium. The fundamentals of coalescence growth in smoke, which have been developed in our series of experiments, are presented in this paper. Mg2Si polyhedral grains were obtained in a Mg grain‐rich atmosphere. Mg2SiO4 polyhedral grains were obtained in a SiO grain‐rich atmosphere. The IR spectra of the resultant grains showed the characteristics of crystalline forsterite.  相似文献   

16.
SEM photographs were taken of euhedral olivine grains from the Murchison C2 chondrite and several terrestrial and lunar occurrences. In general, the crystal faces of the meteorite grains are rough and uneven, with irregular growth patterns. They are very similar to crystal faces on terrestrial olivine grains that formed by sublimation from a vapor phase. They are very different from the relatively smooth and featureless surfaces of magmatic olivine crystals that precipitated from igneous melts. Qualitatively, the surface morphology of the crystal supports the contention that many euhedral crystals of olivine in C2 meteorites condensed from a gas phase.  相似文献   

17.
This paper reviews spectra obtained with the SWS on board of ISO of dust shells around O-rich objects. These spectra reveal the presence of many new emission features between 10 and 45 μm. These bands are generally much narrower than the well-known 10 and 20 μm silicates features. The strength of these features relative to the underlying broad continuum varies from source to source (≅ 5-50%). The 10 μm region shows evidence for the presence of Al2O3 grains. At longer wavelength, the spectra are dominated by features due to crystalline olivine and pyroxene. The exact peak position of these features shows that the emitting grains consist of the Mg-rich end-members of these minerals with an Fe-content of < 10%. The underlying continuum is attributed to amorphous silicate grains. These observations of aluminum-rich and magnesium-rich compounds compare well with the thermodynamic condensation sequence of minerals expected for O-rich outflows. The observations also imply that freeze out (ie., kinetics) of this condensation sequence at different temperatures is an important characteristic of dust formation in these objects. It is suggested that the absence of Fe-rich silicates is a natural consequence of the low temperature at which gaseous Fe reacts with Mg-rich silicates in these outflows, resulting in amorphous grains with little characterizing spectral detail. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
The electrostatic interaction of charged dust grains is analysed by considering the interaction of two charged conducting spheres, rather than the hitherto considered model of a sphere and a point charge. Considerable mofification of the induced charge effects results when the nonzero radius of the second sphere is taken into account.In particular, it is shown that image charge or polarization effects can only be of significance as far as collision rates are concerned when modulus of the charge ratio of two colliding grains is very different from the ratio of their radii. Such a charge ratio deviates from the original Spitzer calculation, where grains have identical charge, irrespective of the grain material, for a given radius. This deviation may occur in cool gas clouds such as Hi regions and dense molecular clouds where the discreteness of electron charge is important, or in interstellar clouds where considerable photo-ionization of a mixture of grain materials of widely varying photoelectric efficiencies takes place.It is further argued that, with regard to the induced charge effects, the accretion rate will not be significantly different for dielectric as compared to conducting grains, regardless of the type of gas cloud under consideration.  相似文献   

19.
We have carried out a SEM-EPMA-TEM study to determine the textures and compositions of relict primary iron sulfides and their alteration products in a suite of moderately to heavily altered CM1 carbonaceous chondrites. We observed four textural groups of altered primary iron sulfides: (1) pentlandite+phyllosilicate (2P) grains, characterized by pentlandite with submicron lenses of phyllosilicates; (2) pyrrhotite+pentlandite+magnetite (PPM) grains, characterized by pyrrhotite–pentlandite exsolution textures with magnetite veining and secondary pentlandite; (3) pentlandite+serpentine (PS) grains, characterized by relict pentlandite exsolution, serpentine, and secondary pentlandite; and (4) pyrrhotite+pentlandite+magnetite+serpentine (PPMS) grains, characterized by features of both the PPM and PS grains. We have determined that all four groups were initially primary iron sulfides, which formed from crystallization of immiscible sulfide melts within silicate chondrules in the solar nebula. The fact that such different alteration products could result from the same precursor sulfides within even the same meteorite sample further underscores the complexity of the aqueous alteration environment for the CM chondrites. The different alteration reactions for each textural group place constraints on the mechanisms and conditions of alteration with evidence for acidic environments, oxidizing environments, and changing fluid compositions (Ni-bearing and Si-Mg-bearing).  相似文献   

20.
A nanodiamond‐rich fraction (NDF) separated from the Orgueil meteorite was subjected to a high‐intensity ultrasonic treatment in a weakly acidic aqueous solution. After sedimentation by centrifugation, two fractions of grains (suspension, designated as OD7C and sediment, designated as OD7D) with different properties have been obtained. The following effects of the sonication were revealed from comparison of the contents and isotope compositions of C, N, and Xe released during stepped pyrolysis and combustion of the fractions OD7C and OD7D, the initial NDF and two grain‐size fractions (OD10 and OD15) produced without sonication (a) surface layer of the sonicated diamond grains is modified to different extent in comparison with nontreated ones, (b) in some grains concentrations of the bulk N and Xe a reduced significantly, and (c) nondiamond nitrogen containing phases (e.g., Si3N4) have been destroyed. It is suggested that combined effects of the sonication and centrifugation observed for the fractions OD7C and OD7D are due to differences in surface chemistry of the nanodiamond grains, which statistically influences behavior of nanoparticles during the sonication resulting in their preferential modification in the different reaction zones of the cavitating fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号